Level Generator for Laserverse using ASP

Abhijeet Krishnan
North Carolina State University
akrish13@ncsu.edu

Abstract

Procedural level generation is a great way to create more con-
tent and unexpected scenarios within a game (Davis 2017).
We demonstrate a level generator built for the puzzle game
Laserverse using Answer Set Programming (ASP). The de-
sign of the generator is explained and design decisions are
justified. An evaluation of the generator is presented using
playability as a metric. We discuss the challenges faced while
writing the generator as well as possible avenues for improve-
ment - both of the generator as well as the process of writing
a generator using ASP.

Introduction

Procedurally generated levels are a major aspect of PCG
research since they have the potential to allow almost any
game to be infinitely replayable. However, level design is a
complex and creative discipline in which current procedural
level generators generally fail to match up to human level de-
signers. Togelius et. al. (Togelius et al. 2013) describes some
of the problems seen in generated levels for Super Mario
Bros., namely a lack of progression and macro-structure, a
lack of storytelling or teaching, inexplicable structures and
content, difficulty spikes and repeated structures. While we
recognized that the field is ripe for greater advancement, we
settled on the modest goal of simply designing a working
generator for our game.

Laserverse is a puzzle game developed in PuzzleScript by
Martens et. al. (Martens et al. 2018) for the purpose of study-
ing the theory of mental model matching. The hypothesis
of this work was that players learn puzzle game mechan-
ics through an iterative process of hypothesizing, failure and
revision of mental models. The game was designed with a
number of mechanics designed to interact in a wide array of
combinations. Our goal was to support this work by design-
ing a level generator which offered control over the specific
mechanics used in the levels, enabling the authors to test
their hypothesis on a wider variety of participants without
having to hand-author multiple levels.

We also present an evaluation of our generator using the
metrics of playability and solution length.

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Background
Level Generation using ASP

ASP is a programming paradigm (like procedural or func-
tional programming) geared towards solving NP-hard search
problems. The problem domain is specified as a set of rules
(or facts) and stable models are generated which satisfy all
those rules. If we can specify our game’s level design space
as a set of ASP constraints, we can use a solver to generate
solutions which satisfy those constraints, each of which is a
playable level. We use clingo, part of the Potassco answer
set solving collection (Gebser et al. 2011) as our solver of
choice.

Smith and Mateas’ paper (Smith and Mateas 2011) was
the first one to argue in favour of ASP as a useful tool
for procedural content generation, citing ASP’s brevity, ex-
pressiveness and generality in quickly constructing design
spaces for games. Later work by the authors on a puzzle
game Refraction (Smith et al. 2012) was also useful, since
the game shares some similarities with Laserverse. A book
chapter by the same authors (Nelson and Smith 2016) pro-
vides more instruction in how to write generators for mazes.

Laserverse

Laserverse is a puzzle game built using the PuzzleScript
game engine (Lavelle 2013). It offers a simple rule-based
syntax for describing actions in the game world. For exam-
ple, say we want the player to push a crate if the player walks
into it. We can express this succinctly in PuzzleScript as

[> Player | Crate] -> [> Player | > Crate

Laserverse is centered around the idea of interacting with
lasers and mirrors in game to power sensors, which then
open doors to the exit. There are additional mechanics such
as buttons, crates, splitters and logic gates. A full explana-
tion of each mechanic in the game can be found in the orig-
inal paper, with mechanics missing from the original paper
described in Figure 2. The mechanics for Laserverse are ex-
pressed in about 121 lines of PuzzleScript.

Generator Evaluation

The idea for evaluating the design space of a generator was
first proposed in Smith and Whitehead’s (Smith and White-
head 2010) seminal paper on the topic, in which they also
presented an evaluation of a level generator for their game

Figure 1: Screenshot of Laserverse level Wire-fu (hand-
authored)

Launchpad. The idea is to define comparison metrics using
which generated levels can be compared. The metrics cho-
sen should reflect global properties of levels and aid in un-
derstanding a generator’s expressive range. With these met-
rics, we can then visualize how the expressive range of a
generator changes when modifications are made to the gen-
erator.

For our generator, we define the comparison metrics of
playability and solution length. Playability is a boolean
value which is True if the level is playable i.e. a solution
exists, and False if it is not. Solution length is a measure
of the minimum number of steps required to solve a certain
level.

Approach

Explain what you did in sufficient detail that someone could
reproduce your work. High-level algorithm descriptions,
equations, and descriptions of your implementation deci-
sions are all in-scope. Explain how you evaluated your work.

Defining a design space

The highly useful approach to defining the design space of
all possible levels would be to restrict ourselves to playable
levels. This would require a notion of playability. As will be
described later, coming up with this notion for a game like
Laserverse, with so many interacting mechanics, proved too
difficult.

To simplify the design space, we opted to restrict our-
selves to levels with a fixed kind of solution. We identified
three such solution types.

1. Player picks up crate - player drops crate on button - but-
ton opens door to exit - player walks to exit

2. Player rotates laser - laser activates sensor - sensor acti-
vates wires to door - door opens to exit - player walks to

exit

3. Player rotates laser - laser reflects off mirror - reflected

beam activates sensor - sensor activates wires to door -
door opens to exit

This leads to a lot of simplifications. We only need one of
each object for whichever level we generate (e.g. one button,
one crate and one door for level of type 1). We can define
playability in terms of the existence of paths between each
objects in the solution. We can ignore all other mechanics
and object types present in Laserverse.

We follow the generate and test methodology to develop
our generator. We generate all possible levels with the line -

{ at(X, ¥, T) :tile(T) } =1 :— dimX(X), dimY(Y).

This tries every possible tile (object) type for every possi-
ble tile location in the game. This is clearly just a brute force
enumeration of every possible level in the design space, so
we refine this design space with additional rules.

We define cardinality constraints for each type of object
in the game. This allows a designer to change the number
of these objects in generated levels. Given our design space,
we would only get playable levels if we fix the number of
objects as 1. The code for this can be seen below.

#const minLasers = 1.

#const maxLasers = 1.

minLasers { at(0..n-1, 0..m-1, T) :laser(T) }
maxLasers.

We also constrain our levels to a 6 x 6 grid to reduce gen-
eration time. This can be modified, but generating a level
would take longer.

We add some rules to ensure our design space matches
the authored levels. For example, we add rules to ensure that
the border is a wall, that the player and exit both lie on the
border. To enforce playability, we require that the player and
exit not lie on a corner.

We then add rules specific to each level type. For example,
in type 2, we add rules which prevent the laser from being
blocked by anything on its path to the sensor.

Now by enabling the rules for each level type in turn, we
can generate levels of each type. These levels are not guaran-
teed to be playable, since the paths to various objects might
be blocked, and we have not added rules which explicitly
disallow this (due to the difficulty encountered when writing
such rules).

Evaluation

The choice of suitable comparison metrics for puzzle games
is an open question. One possible metric is the sense of sur-
prise experienced by players when they discover how me-
chanics interact in unexpected ways to lead to a solution,
but it is tricky to quantify this. In any case, we have very
few mechanics we choose to work with for our evaluation,
since we want to have a large number of playable levels.
Therefore, we opt for the relatively simple metrics of
playability and solution length to differentiate our levels. We
measure solution length only for playable levels. We have
written a DFS-based agent in Python to solve our generated

Movable Laser Like the basic laser, but the player can move it around the game world without changing its orientation
Movable Mirror Like the basic mirror, but the player can move around it the game world without changing its orientation
Crate Can be moved around the game world and dropped onto buttons to keep them activated

Splitter Splits an incoming beam of light into two perpendicular beams

Rotatable Splitter | A splitter that the player can rotate to choose where the split beams are incident.

Movable Splitter | Like the basic splitter, but the player can move it around the game world without changing its orientation
AND Gate Activates only if both inputs are activated

Open Door A door which is open by default, and closes when activated

Glass Pane A transparent block which is solid but allows laser beams to pass through it

Sensor Activates a wire if a laser beam is incident on it

Guard Prevents a laser beam from striking a goal, usually allows beams from a single direction only

Figure 2: Elemental mechanics in Laserverse

levels to measure these metrics. The complete code for our

generators and evaluators can be on found on GitHub'.

Results
Playability
Playable | Unplayable | Total
Type 1 548 452 1000
Type 2 466 534 1000
Type 3 537 463 1000

Figure 3: Number of playable levels for each level type

Solution Length

Type 1

& &\a' Q"

180
160

R

o

o
A

kcl
NS S
& > ¢
@ ¥ &

Figure 4: Histogram of solution lengths for type 1 level

Discussion
Challenges

Lack of expressivity A general notion of playability is
hard to accurately capture for Laserverse. We can look to
another puzzle game called Sokoban, which has also been
implemented in PuzzleScript. A generator for Sokoban was
implemented by the team behind clingo for the 37% Answer
Set Programming Competition (Calimeri et al. 2011) using

"https://github.ncsu.edu/akrishl3/
laserverse-level-generator

Type 2

71 (7,8 (89 (9,10 (10,11](11,12](12,13]

0

[2,3] (3,4 (45] (56]

Figure 5: Histogram of solution lengths for type 2 level

Type 3

Figure 6: Histogram of solution lengths for type 3 level

time as a variable to represent a plan of actions. However,
Sokoban has only a few actions, while Laserverse has many,
depending on the objects in the environment. Therefore, a
notion of playability would involve finding a plan of actions
which would solve a given level. This is difficult to code us-
ing ASP. Indeed, the simple notion of having a single wire
connect two objects was also difficult to conceptualize and
code. This could be due to the author’s inexperience with
ASP.

Lack of software engineering tools Common tools such
as a debugger have no equivalent while working with ASP.
Say a certain new rule is causing undesired answer sets to be
produced, or more commonly, causing the solver to return an
UNSATISFIABLE verdict. It is difficult to pinpoint why ex-

actly this happens without a deep knowledge of ASP or logic
programming. Tools which expose the inner working of the
solver better would be useful here. There has been some
work on software engineering for ASP (Febbraro, Reale, and
Ricca 2011), but there was no tool which proved useful to us.

Additionally, since the codebase for this generator was
uncommonly large, it would be helpful to have a facility sim-
ilar to make for C/C++ programming which can utilize rules
written in different files together. This would aid modularity
and ease while developing generators using ASP.

Levels generated using ASP also suffer from lack of intent
and storytelling.

Improvements and Future Work

While additional and more complex level types can always
be constructed, the ultimate goal would be to capture a gen-
eral notion of playability in ASP. The idea of using mis-
sion generation to generate a desired solution using ASP,
and then using ASP to embed that in a puzzle grid layout
seems promising.

References

Calimeri, F.; Ianni, G.; Ricca, F.; Alviano, M.; Bria, A.;
Catalano, G.; Cozza, S.; Faber, W.; Febbraro, O.; Leone,
N.; Manna, M.; Martello, A.; Panetta, C.; Perri, S.; Reale,
K.; Santoro, M. C.; Sirianni, M.; Terracina, G.; and Veltri,
P. 2011. The third answer set programming competition:
Preliminary report of the system competition track. In Del-
grande, J. P.,, and Faber, W., eds., Logic Programming and
Nonmonotonic Reasoning, 388—403. Berlin, Heidelberg:
Springer Berlin Heidelberg.

Davis, G. 2017. Procedural level generation in unity for
M.ER.C. (part 1 of 2). https://www.gamasutra.
com/blogs/GrahambDavis/20170130/290326/
Procedural_Level_Generation_in_Unity_
for MERC_part_1_of_2.php. [Online; accessed
07-December-2018].

Febbraro, O.; Reale, K.; and Ricca, F. 2011. Aspide: In-
tegrated development environment for answer set program-
ming. In International Conference on Logic Programming
and Nonmonotonic Reasoning, 317-330. Springer.

Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.;
Schaub, T.; and Schneider, M. 2011. Potassco: The pots-
dam answer set solving collection. Ai Communications
24(2):107-124.

Lavelle, S. 2013. Puzzlescript. https://www.
puzzlescript.net/index.html. [Online; accessed
07-December-2018].

Martens, C.; Williams, A.; Alexander, R. S.; and Dabral, C.
2018. Generating puzzle progressions to study mental model
matching. EXAG 2018.

Nelson, M. J., and Smith, A. M. 2016. Asp with applications
to mazes and levels. In Procedural Content Generation in
Games. Springer. 143—-157.

Smith, A. M., and Mateas, M. 2011. Answer set program-
ming for procedural content generation: A design space ap-

proach. IEEFE Transactions on Computational Intelligence
and Al in Games 3(3):187-200.

Smith, G., and Whitehead, J. 2010. Analyzing the expres-
sive range of a level generator. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games,
PCGames 10, 4:1-4:7. New York, NY, USA: ACM.

Smith, A. M.; Andersen, E.; Mateas, M.; and Popovi¢, Z.
2012. A case study of expressively constrainable level de-
sign automation tools for a puzzle game. In Proceedings of

the International Conference on the Foundations of Digital
Games, 156-163. ACM.

Togelius, J.; Champandard, A. J.; Lanzi, P. L.; Mateas, M.;
Paiva, A.; Preuss, M.; and Stanley, K. O. 2013. Proce-
dural content generation: Goals, challenges and actionable
steps. In Dagstuhl Follow-Ups, volume 6. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

