Towards the Automatic Synthesis of Interpretable Chess Tactics

Abhijeet Krishnan

Chris Martens

North Carolina State University
Venture IV, 1730 Varsity Dr,
Raleigh, NC 27606
akrish13 @ncsu.edu, martens @csc.ncsu.edu

Abstract

State-of-the-art reinforcement learning agents are capable of
outperforming human experts at games like chess, Go and
StarCraft II. These agents do not simply take advantage of
their digital hardware in being able to react and calculate
faster than humans, but employ better strategies that lead to
more victories. Interpreting these strategies would give hu-
man players valuable insight into how to improve their play.
In this preliminary work, we propose a symbolic sub-policy
model for playing chess. Inspired by chess tactics, our model
attempts to incorporate domain knowledge to improve inter-
pretability. We adapt patterns learned by an inductive logic
programming system called PAL to derive our model. We
contribute a divergence metric to evaluate our model against
arandom baseline, and find a set of tactics that is able to sug-
gest moves of similar playing strength to a human beginner.
Finally, we propose a computational evaluation scheme for
the model by augmenting an off-the-shelf engine with it.

Introduction

Recent advancements in reinforcement learning (RL) have
produced agents capable of competing with and even
outperforming the best human experts at various games
like chess (Silver et al. 2018), Go (Silver et al. 2016),
Shogi (Li et al. 2020), Mahjong (Silver et al. 2018), Star-
Craft II (Vinyals et al. 2019) and Dota 2 (Berner et al. 2019).
These agents do not simply take advantage of faster reaction
and calculation abilities, but are actually employing new,
better strategies that lead to more victories. Borrowing from
Jeanette Wing’s definition of computational thinking (Wing
2008), these agents have better abstractions than human ex-
perts for the games they’re trained to play.

Despite the existence of such agents in various compet-
itive games, we still see human competition continue to
thrive, with these agents leading to new ways of thinking and
a re-evaluation of long-held beliefs about the game. These
discoveries have, so far, involved manual or engine-assisted
analysis of the games played by the agents (Sadler and Re-
gan 2019; Zhou 2018). If the agents could themselves ex-
plain their strategies and decision-making to human players,
we posit that it would help improve their play.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such chess-playing agents (chess engines) are used exten-
sively in game analysis (Smith 2004; Tukmakov 2020) and
tournament preparation (Andrei 2021). Expert chess play-
ers utilize engine move suggestions and evaluations to ana-
lyze new lines to play (PTI 2016). Most current engines use
a neural network-based model with many thousands of pa-
rameters trained using deep reinforcement learning (DRL)
in conjunction with a search algorithm to produce game
moves. Examples include Monte Carlo Tree Search in Al-
phaZero (Silver et al. 2016), Predictor+Upper Confidence
Bound tree search in Leela Chess Zero (Pascutto, Gian-Carlo
and Linscott, Gary 2019) or alpha-beta pruning in Stockfish
14 (Romstad, Costalba, and Kiiski 2021). However, this is
very different to how human chess players employ pattern-
recognition to produce moves (de Groot 1946; Connors,
Burns, and Campitelli 2011).

Current research in the newly emerging field of explain-
able RL (XRL) attempts to develop methods to help hu-
mans understand RL agent decision. Multiple techniques
like t-SNE (Moore and Stamper 2019), trajectory cluster-
ing (Osborn, Samuel, and Mateas 2018) and heatmaps (Broll
et al. 2019) have been applied to visualize agent behaviour
in games. Symbolic policies have been investigated as in-
terpretable representations of neural network-based policies
learned via DRL. They have been learned directly from re-
ward signals (Trivedi et al. 2021; Landajuela et al. 2021), as
surrogate models for more complex policies (Verma et al.
2018), or from input/output pairs (Derner, Kubalik, and
Babuska 2018). However, most research in this area learns
policies for optimal control in continuous environments,
with discrete game environments like chess receiving little
attention.

In this work, we propose a framework to learn a symbolic
sub-policy model for chess. We describe our sub-policy as
being a collection of first-order logic rules which model
chess tactics. We use patterns learned by an existing induc-
tive logic programming (ILP) system called PAL (Patterns
and Learning) (Morales 1992) to derive these tactics. We
contribute a divergence metric to evaluate our model of a tac-
tic using the move evaluation capabilities of a chess engine.
We present an evaluation of a set of tactics obtained from
PAL against a random baseline using our metrics. Finally,
we propose a computational evaluation of this approach by
augmenting a chess engine with the synthesized tactics. We

conclude with a discussion on the limitations of this ap-
proach, along with future work.

Related Work

Strategy Synthesis A number of works attempt to learn
rule-based agents using evolutionary approaches to play
role-playing games like Neverwinter Nights (Spronck,
Sprinkhuizen-Kuyper, and Postma 2004), board games like
Checkers and Reversi (Benbassat and Sipper 2011), coop-
erative games like Hanabi (Canaan et al. 2018), platformers
like Mario (de Freitas, de Souza, and Bernardino 2018), and
real-time strategy games like uRTS (Marifio et al. 2021).
Partially-applicable strategies for puzzle games have been
learned using constraint satisfaction (Butler, Torlak, and
Popovi¢ 2017). Our model for chess tactics is learned us-
ing ILP, and incorporates domain knowledge of the concept
of a tactic in order to improve interpretability.

Explainable RL Attempts to make RL agent policies
amenable to human interpretation have been pursued in the
XRL field. Puiutta and Veith (2020) provide a survey of re-
cent XRL methods. An interpretability technique that has
received some attention is that of training an inherently in-
terpretable surrogate model which matches the performance
of the original agent. Options for this surrogate model that
have been investigated include decision trees (Bastani, Pu,
and Solar-Lezama 2018; Coppens et al. 2019; Sieusahai
and Guzdial 2021) and programmatic policies (Verma et al.
2018; Trivedi et al. 2021). Our proposed sub-policy model
is only partially-applicable, and attempts to improve inter-
pretability for chess by incorporating domain knowledge of
how chess tactics are structured.

Chess Pattern Learning Chess has been called the
drosophilia' of artificial intelligence (McCarthy 1990). It
has been a mainstay of Al research from the invention of the
digital computer (Claude 1950) to the neural network revo-
lution (Silver et al. 2018). Given the depth of experimenta-
tion with Al techniques for chess, it is not surprising that the
idea of using patterns to guide a computer to play chess is
not new. Patterns have been used to suggest moves and guide
playing strategies in middle-game positions (Berliner 1975;
Pitrat 1977; Wilkins 1979) and endgames (Huberman 1968;
Bramer 1977; Bratko 1982). Levinson and Snyder (1991)
used weighted patterns in their Morph system as an evalu-
ation function to guide playing strategy. Very recent work
has attempted to directly probe neural network engines to
test for the presence of human concepts (McGrath et al.
2021). Morales (1992) developed the PAL system to learn
first-order patterns in chess using ILP. We build upon this
work by taking advantage of modern chess engines to serve
as the reference evaluation function to select learned patterns
instead of hand-crafted heuristics.

'fruit fly; easily bred and thus extensively used in genetics re-
search

Background
Inductive Logic Programming

Inductive logic programming (ILP) is a form of symbolic
machine learning where the goal is to induce a hypothesis
(a set of logical rules) that generalises given training ex-
amples (Cropper and Dumanci¢ 2020). It can learn human-
readable hypotheses from smaller amounts of data than neu-
ral network-based models.

An ILP problem is specified by three sets of Horn
clauses—B, the background knowledge, £, the set of pos-
itive examples of the concept, and E—, the set of negative
examples of the concept. The ILP problem is to induce a hy-
pothesis H that, in combination with the background knowl-
edge, entails all the positive examples and none of the nega-
tive examples. Formally, this can be written as -

Ve € ET,HUB |= e (i.e. H is complete)
Ve € E=,H UB [~ e (i.e. H is consistent)

To make the ILP problem more concrete, we provide a toy
example below.

ET and E~ contain positive and negative examples of
the target knight_move relation respectively. B contains
background knowledge i.e., clauses which might be useful
in inducing a hypothesis for knight_move.

knight_move (d4, c6
knight_move (d4,e6
knight_move (d4, b5

(

. (

ET = (
knight_move (d4, £5

(

(

(

)

)
)
).
knight_move (d4,d5) .
knight_move (d4,Db6)
knight_move (d4,el)
knight_move (d4,h7)
1 _move (d4,co6) .
1_move (d4,e6) .
1_move (d4,b5) .

1 _move (d4, £5) .

From this information, we could induce a hypothesis for
knight_move as -

B =

knight_move (From, To) : — 1_move (From, To) .

PAL System

The PAL (Patterns and Learning) system was introduced
in Morales (1992). It attempts to use ILP to synthesize pat-
terns for chess play, which are expressed using a subset
of Horn clause logic. It contributes a predicate vocabulary
for expressing these patterns and chess positions as Horn
clauses. The pattern-learning problem is framed as an ILP
problem, for which a heuristically-constrained version of
the rlgg (relative least general generalization) algorithm is
used to induce plausible hypotheses. Patterns learned can be
static and not involve any piece movement, or be dynamic
and describe multi-move tactics. We expand upon how the
PAL system formally defines and synthesizes these chess
patterns.

can_check (S1,P1,(X1,Y1),S2,king,
(X2,Y2),(X3,Y3),Posl) «

contents(S1,P1,(X1,Y1),Posl),
contents(S2,king,(X2,Y2),Posl),
other_side(S1,S2),
- in_check(S2,(X2,Y2),P1,(X1,Y1),Posl),
make_move(S1,P1,(X1,Y1),(X3,Y3),Pos1,Pos2),
in_check(S2,(X2,Y2),P1,(X3,Y3),Pos2).

Figure 1: PAL rule for the can_check pattern. A piece
(P1) can check the opponent’s King after moving to
(X3,Y3).

Pattern Formalism A pattern in PAL is formally defined
as a non-recursive Horn clause of the form

Head — Dl,DQ,-- . 7Dn,F1,F27~-~ ;Fm
where,
* Head is the head of the pattern definition
e The D; are “input” predicates used to describe the posi-
tion and represent pieces involved in the pattern
* The F are instances of definitions which are either pro-
vided as background knowledge or learned by PAL, and

represent the conditions (relations between pieces and
places) to be satisfied by the pattern.

An example of a checking move pattern, where a move
that puts the opponent king in check is suggested, is re-
produced from the paper in Figure 1. A key predicate is
make_move, which determines whether a pattern is static
or dynamic. The content s predicates are used to describe
the position on the board. The remaining predicate defini-
tions are provided as background knowledge.

Pattern Synthesis The input to the PAL generalization
algorithm is a set of pattern definitions (both predefined
and learned) along with a description of a chess position
(as ground unit clauses). The algorithm extends Buntine’s
method for constructing the rlgg of two clauses to multiple
clauses. It uses the following constraints and heuristics to
limit hypothesis size and increase the algorithm’s generali-
sation steps -

¢ Disallowing variables in the head or body of a rule which
are not connected to a literal i.e., not equal to a variable
of that literal

» Labeling constants occurring in the ground literals of a
rule body to make patterns piece-invariant

* Restricting the legal moves from a position to only be
those which introduce a new predicate name or remove
an existing predicate name

PAL uses an automatic example generator to manually
guide the generalization algorithm towards learning desired
concepts. Given an example of the target concept, the gener-
ator perturbs the example to create a new example for which
a classification label must be provided. To restrict the ex-
ample space searched, the automatic example generator at-
tempts to generate examples which specialize the current hy-
pothesis in case of a prior positive example, or generalize it

tactic(Position) <
mat ches(Position),
!’
suggested(Movel,Move2,- - - MoveN),
legal(Position,Movel),
legal(Position,Move?2),

legal(Position,MoveN).

Figure 2: A Prolog pseudo-definition for a tactic. “!” is the
Prolog cut operator.

in case of a prior negative example. We refer interested read-
ers to the original thesis for further details.

Methodology
Chess Tactic Model

We conceptualize our sub-policy model as a chess tactic.
Formally, we define a tactic as a first-order logic rule that
can bind to a chess position. A position is expressed in first-
order logic using an appropriate predicate vocabulary. If a
tactic binds to (matches) a particular position, it suggests a
move (or moves) to be played. The moves suggested must
be legal in the given position. This is described in Figure 2
as a Prolog pseudo-definition.

A single tactic, or even a set of tactics, does not repre-
sent complete policy for playing chess. This is because be-
cause we might encounter a position for which no tactic
matches. In this case, our model cannot make a move. There
might also be positions to which multiple tactics apply, in
which case an arbitration process for selecting a single move
among the various suggestions is not obvious.

Tactic Utility Metrics

We introduce two metrics — coverage and similarity, to
measure the utility of a learned tactic.

Coverage A tactic ¢’s coverage for a set of positions P is
calculated as —

P
COVeraget — ‘ |m;t|ch|

where a position p € Py if there is a binding assign-
ment of the variables in the rule head of the tactic ¢ to the
position p.

Divergence To measure the quality of moves suggested
by a tactic, we extend a metric previously used to anal-
yse world chess champions (Guid and Bratko 2006, 2011;
Romero 2019) to multiple moves using discounted cumula-
tive gain (DCG) (Jarvelin and Kekildinen 2002). A move’s
error in a position p is measured by comparing it to the best
move suggested by the engine in that position. This com-
parison is done quantitatively by using the engine’s move
evaluation function eval(-, p). In case an engine evaluates a
position to be a ‘Mate in X’ rather than a centipawn score,
we assign an arbitrary large value to the evaluation.

Error(move, p) = |eval (moveengine, p) — eval(move, p)|

Since a tactic might suggest multiple moves, we propose
the use of DCG as a metric to compare ranked move sugges-
tion lists. Assuming the list of suggestions output by a tactic
to be in ranked order, we obtain a list of best moves from
the engine of similar length as the suggestions, and compare
the two using DCG. Thus, the final divergence metric for a
tactic ¢ over a set of positions P is —

Divergence, = Z Z Error(m;, p)
t = |Pmdtch\ et o log, (1 + 1)

where M, is the ranked list of move suggestions output by
a tactic, and m; is the i™ move in M. divergence of a tactic
(to the reference engine) is low and close to 0 when its sug-
gestions are similar in evaluation to the engine’s best moves,
and takes on large values when it differs significantly.

Implementation using PAL

We use the PAL system to synthesize tactics. We select seven
patterns that PAL was shown to learn, and modify them to
output a move suggestion. These patterns and their verbal
definitions are listed in Table 1. All patterns learned other
than pin are 1-ply dynamic patterns, which means they in-
clude a single make_move predicate in the rule body look-
ing ahead one move. We modify these patterns to intro-
duce a suggestion predicate with the same variables as
make_move. For pin, which is a static pattern as learned
by PAL, we convert it into a dynamic pattern as shown in
Figure 3 and introduce the suggestion predicate in the
same way.

pin (S1,P1,(X1,Y1),S2king,
(X2,Y2),52,P3,(X3,Y3),(X4,Y4),Posl) +
sliding piece(P1,(X1,Y1),Posl),
make_move(S1,P1,(X1,Y1),(X4,Y4),Pos1,Pos2)
sliding piece(P1,(X4,Y4),Pos2),
stale(S2,P3,(X3,Y3),Pos2),
threat(S1,P1,(X4,Y4),52,P3,(X3,Y3),Pos2),
in_line (S2,king,(X2,Y2),S2,P3,

(X3,Y3),S1,P1,(X4,Y4),Pos2).

Figure 3: Modified PAL rule for the pin pattern to convert
it into a tactic

Evaluation

We wish to investigate whether the synthesized tactics tend
to suggest good moves to play. We do this by measuring
coverage and divergence for each of our tactics over a set
of positions using both a strong and a weak reference en-
gine. For our strong reference engine, we use Stockfish 14,
the winner of the TCEC 2020 Championship (Haworth and
Hernandez 2021). For our weak reference engine, we use
Maia Chess (Mcllroy-Young et al. 2020), a chess engine

trained to produce human-like moves. We use the maial
model, which is targeted toward 1100 ELO (a measure of
relative playing strength, and roughly equal to a beginner).
We limit the search depth to 1-ply for both Stockfish 14 and
Maia 1100 to resemble our tactics. As a baseline, we use a
random tactic which is applicable to all positions and pro-
duces a random legal move in the position. We limit the
number of suggestions from a tactic to 3, and assume the
output order of tactic suggestions as the intended ranked or-
der. For ease of implementation, we manually translated the
tactics from Prolog definitions to Python functions. We use
5000 games from the January 2013 archive of standard rated
games played on lichess.com (lichess.org 2021). For each
game, we generate positions by iterating through the move
list, making the move, and adding the resulting position to
the evaluation set. In total, we generate 325,830 positions.

Results and Analysis

We summarize the results of our evaluation in Table 2.

From the high coverage values obtained, we conclude that
tactics like can_threat and discovered_threat are
too general, whereas tactics like discovered_check
are too specific. Tactics like can_check, can_fork and
skewer strike a balance between these extremes.

From the divergence metrics calculated using Maia-1100
(our weak engine), we see that most of our tactics have lower
divergence scores than our random baseline, indicating that
they tend to produce moves which are evaluated somewhat
similarly to a weak engine’s best moves. For Stockfish 14,
however, all our tactics have higher divergence scores than
random, indicating that they do not tend to produce moves
similar to a strong engine. Thus, we qualitatively conclude
that our tactics resemble that of a beginner chess player.

Proposed Evaluation

We propose an experiment to investigate whether the iden-
tified set of tactics are useful for a human player to learn
in order to generate good moves. To do this, we will mea-
sure the win-rate of a chess engine against a version of itself
augmented with these tactics. As a human proxy, we plan
to use Maia Chess, specifically maial model targeted to-
ward 1100 ELO. We will play games between the engines
of 30 minutes + 5 seconds time control, following the TCEC
League rules (kanchess 2021) and starting from the default
start position. As before, we will limit the evaluation depth
of the search tree for the augmented and unaugmented en-
gines to 1. We measure the divergence scores for our tactics
with a strong reference engine (Stockfish 14). We will mod-
ify the action-selection procedure of Maia Chess to utilize
the first suggestion of the lowest divergence tactic applicable
to a given position, instead of the engine’s move choice. This
is made explicit in Algorithm 1. Finally, we will compare
the win rates of the augmented engine against the unmod-
ified version of itself over multiple games. Our hypothesis
is that the augmented engine will have a significantly higher
win-rate, enabling us to conclude that the set of tactics tend
to suggest good moves.

Pattern Definition
can_threat A piece (P1) can threaten another piece (P2) after making a move to (X3,Y3)
can_fork A piece (P1) can produce a fork to the opponent’s King and piece (P3) after making a move to

(X4,Y4)
can_check
discovered_check
discovered_threat

A piece (P1) can check the opponent’s King after a moving to (X3,Y3)
A check by piece (P2) can be “discovered” after moving another piece (P1) to (X4,Y4)
A piece (P1) can threaten an opponent’s piece (P3) after moving another piece (P2) to (X4,Y4)

skewer A King in check by a piece (P1) “exposes” another piece (P3) when it is moved out of check to
(X4,Y4)
pin A piece (P3) cannot move because it will produce a check on its own side by piece (P1)
Table 1: Patterns learned by the PAL system that are used to create tactics
Tactic Coverage Divergence. Mo'rel 2021). Future vs{ork could invegtigate alternate ILP al-
SF14 | Maia gorithms to use our divergence metric as a loss function to
can_threat 0.96 | 378.94 | 9.22 optimize tactics for (Evans and Grefenstette 2018).
can_check 045 | 549.19 | 4.02 Our tactic model is loosely inspired by how chess tactics
can_fork 0.32 | 67645 | 4.67 are learned and practiced. However, our tactics are limited
discovered_check ~0 | 338.55 | 18.64 to looking 1-ply in the future i.e., they can only recognize
discovered_threat 0.96 | 37597 | 1.19 the presence of a matching pattern in the immediately next
skewer 022 | 7484 | 541 position. Many chess tactics suggest combinations of moves,
pin 0.79 | 526.45 4.9 a series of moves where the matching pattern shows up only
random 1] 328.09 | 8.28 in a particular sequence (see Figure 4). Extending the tactic

Table 2: Coverage and DCG for each tactic

Algorithm 1: Augmented engine move selection

Input: set of tactics 7', position p, chess engine move selec-
tion procedure C.make_move(+)
Output: legal move in position p
move < C.make_move(p)
min_divg < oo
fort € T do
if ¢ matches p and divg(t) < min_divg then
move < t.suggestion
min_divg < divg(t)
end if
end for
return move

Al A A S o ey

Conclusion and Future Work

We have described a symbolic sub-policy model for chess
inspired by the pattern-action model of chess tactics. We
have used patterns learned by an ILP system to construct
these tactics. We have contributed a metric for measuring
the divergence of these tactics to a reference chess-playing
agent. We evaluated a set of tactics learned by a chess pattern
learning system using our metric to find that they resembled
a weak engine, but were not similar to a strong one.

We use patterns learned by PAL to obtain our tactics.
However, PAL uses manual labeling of generated examples
to learn specific concepts, and requires additional effort to
convert the learned patterns into tactics for our model. We
aim to investigate the automatic learning of tactics from a
dataset of chess positions and move suggestions using ILP as
implemented by modern systems like Popper (Cropper and

model to express and recognize such combinations will be
a useful avenue for future work. We also wish to investigate
the expression of longer-term plans from chess literature like
centre control and pawn structure using tactics.

a8 %) U
% ,,//
"y fﬁ@/

g h

Figure 4: An example of the limitations of our 1-ply
can_fork tactic. White has no immediate forking move
here, leading to the tactic not matching. However, if they
play 1. Nxb4, then Black’s best response is 1. ... Rxc7 which
allows a fork with 2. Nd5+ leading to the capture of the rook.

,x% 71%
7%

_\Mm-h-cnm-qoa
AN

Our appeal to the interpretability of these tactics rests on
similar claims made regarding the interpretability of rule-
based strategies. Future work will involve rigorously testing
these assumptions with user studies using evidence-based

measures of interpretability (Lage et al. 2019; Kliegr, Bah-
nik, and Fiirnkranz 2021). Specifically, we wish to investi-
gate the ease of learning and applying these tactics in real
games played by human players.

References

Andrei, M. 2021. A supercomputer helped set up the World
Chess Championship game. Accessed: 2021-10-27.

Bastani, O.; Pu, Y.; and Solar-Lezama, A. 2018. Verifiable
reinforcement learning via policy extraction. arXiv preprint
arXiv:1805.08328.

Benbassat, A.; and Sipper, M. 2011. Evolving board-game
players with genetic programming. In Proceedings of the
13th annual conference companion on Genetic and evolu-
tionary computation, 739-742.

Berliner, H. J. 1975. A representation and some mech-
anisms for a problem solving chess program. Technical
report, CARNEGIE-MELLON UNIV PITTSBURGH PA
DEPT OF COMPUTER SCIENCE.

Berner, C.; Brockman, G.; Chan, B.; Cheung, V.; Debiak,
P.; Dennison, C.; Farhi, D.; Fischer, Q.; Hashme, S.; Hesse,
C.; et al. 2019. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680.

Bramer, M. A. 1977. Representation of Knowledge for
Chess Endgames Towards a Self-Improving System. Ph.D.
thesis, Open University (United Kingdom).

Bratko, I. 1982. Knowledge-based problem-solving in AL3.
Machine intelligence, 10: 73-100.

Broll, B.; Hausknecht, M.; Bignell, D.; and Swaminathan,
A. 2019. Customizing scripted bots: Sample efficient im-
itation learning for human-like behavior in minecraft. In
AAMAS Workshop on Adaptive and Learning Agents.

Buntine, W. 1988. Generalized subsumption and its appli-
cations to induction and redundancy. Artificial intelligence,
36(2): 149-176.

Butler, E.; Torlak, E.; and Popovié, Z. 2017. Synthesizing
interpretable strategies for solving puzzle games. In Pro-
ceedings of the 12th International Conference on the Foun-
dations of Digital Games, 1-10.

Canaan, R.; Shen, H.; Torrado, R.; Togelius, J.; Nealen, A.;
and Menzel, S. 2018. Evolving agents for the hanabi 2018
cig competition. In 2018 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 1-8. IEEE.

Claude, E. S. 1950. Programming a Computer for Playing
Chess. Philosophical Magazine, Ser, 7(41): 314.

Connors, M. H.; Burns, B. D.; and Campitelli, G. 2011. Ex-
pertise in complex decision making: the role of search in
chess 70 years after de Groot. Cognitive science, 35(8):
1567-1579.

Coppens, Y.; Efthymiadis, K.; Lenaerts, T.; Nowé, A.;
Miller, T.; Weber, R.; and Magazzeni, D. 2019. Distilling
deep reinforcement learning policies in soft decision trees.
In Proceedings of the IJCAI 2019 workshop on explainable
artificial intelligence, 1-6.

Cropper, A.; and Dumanci¢, S. 2020. Inductive logic
programming at 30: a new introduction. arXiv preprint
arXiv:2008.07912.

Cropper, A.; and Morel, R. 2021. Learning programs by
learning from failures. Machine Learning, 110(4): 801-856.

de Freitas, J. M.; de Souza, F. R.; and Bernardino, H. S.
2018. Evolving Controllers for Mario Al Using Grammar-
based Genetic Programming. In 2018 IEEE Congress on
Evolutionary Computation (CEC), 1-8. IEEE.

de Groot, A. D. 1946. Het denken van den schaker: een
experimenteel-psychologische studie. Noord-Hollandsche
Uitgevers Maatschappij Amsterdam.

Derner, E.; Kubalik, J.; and Babuska, R. 2018. Data-
driven construction of symbolic process models for rein-
forcement learning. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), 5105-5112. IEEE.

Evans, R.; and Grefenstette, E. 2018. Learning explanatory
rules from noisy data. Journal of Artificial Intelligence Re-
search, 61: 1-64.

Guid, M.; and Bratko, I. 2006. Computer analysis of world
chess champions. ICGA journal, 29(2): 65-73.

Guid, M.; and Bratko, I. 2011. Using heuristic-search based
engines for estimating human skill at chess. ICGA journal,
34(2): 71-81.

Haworth, G.; and Hernandez, N. 2021. The 20 th Top Chess
Engine Championship, TCEC20. ICGA Journal, (Preprint):
1-12.

Huberman, B. J. 1968. A program to play chess end games.
65. Department of Computer Science, Stanford University.

Jarvelin, K.; and Kekéildinen, J. 2002. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on Informa-
tion Systems (TOIS), 20(4): 422-446.

kanchess. 2021. TCEC Leagues Season Rules. Accessed:
2021-10-27.

Kliegr, T.; Bahnik, S.; and Fiirnkranz, J. 2021. A review
of possible effects of cognitive biases on interpretation of
rule-based machine learning models. Artificial Intelligence,
103458.

Lage, I.; Chen, E.; He, J.; Narayanan, M.; Kim, B.; Gersh-
man, S. J.; and Doshi-Velez, F. 2019. Human evaluation
of models built for interpretability. In Proceedings of the
AAAI Conference on Human Computation and Crowdsourc-
ing, volume 7, 59-67.

Landajuela, M.; Petersen, B. K.; Kim, S.; Santiago, C. P;
Glatt, R.; Mundhenk, N.; Pettit, J. F.; and Faissol, D.
2021. Discovering symbolic policies with deep reinforce-

ment learning. In International Conference on Machine
Learning, 5979-5989. PMLR.

Levinson, R.; and Snyder, R. 1991. Adaptive pattern-
oriented chess. In Machine Learning Proceedings 1991, 85—
89. Elsevier.

Li, J.; Koyamada, S.; Ye, Q.; Liu, G.; Wang, C.; Yang, R.;
Zhao, L.; Qin, T.; Liu, T.-Y.; and Hon, H.-W. 2020. Suphx:
Mastering mahjong with deep reinforcement learning. arXiv
preprint arXiv:2003.13590.

lichess.org. 2021. lichess.org open database.
database.lichess.org/. Accessed: 2021-10-27.

Marifio, J. R.; Moraes, R. O.; Oliveira, T. C.; Toledo, C.; and
Lelis, L. H. 2021. Programmatic Strategies for Real-Time
Strategy Games. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, 381-389.

McCarthy, J. 1990. Chess as the Drosophila of Al. In Com-
puters, chess, and cognition, 227-237. Springer.

McGrath, T.; Kapishnikov, A.; Tomasev, N.; Pearce, A.;
Hassabis, D.; Kim, B.; Paquet, U.; and Kramnik, V.
2021. Acquisition of Chess Knowledge in AlphaZero.
arXiv:2111.09259 [cs, stat]. ArXiv: 2111.09259.

Mcllroy-Young, R.; Sen, S.; Kleinberg, J.; and Anderson,
A. 2020. Aligning Superhuman Al with Human Behavior:
Chess as a Model System. In Proceedings of the 25th ACM
SIGKDD international conference on Knowledge discovery
and data mining.

Moore, S.; and Stamper, J. C. 2019. Exploring Expertise
through Visualizing Agent Policies and Human Strategies in
Open-Ended Games. In EDM (Workshops), 30-37.

Morales, E. 1992. First order induction of patterns in Chess.
Ph.D. thesis, PhD thesis, The Turing Institute-University of
Strathclyde.

Osborn, J. C.; Samuel, B.; and Mateas, M. 2018. Visualiz-
ing the strategic landscape of arbitrary games. Information
Visualization, 17(3): 196-217.

Pascutto, Gian-Carlo and Linscott, Gary. 2019. Leela Chess
Zero (v0.21.0).

Pitrat, J. 1977. A chess combination program which uses
plans. Artificial Intelligence, 8(3): 275-321.

PTI. 2016. World Chess Championship: Role of the ‘sec-
onds’.

Puiutta, E.; and Veith, E. M. 2020. Explainable reinforce-
ment learning: A survey. In International Cross-Domain
Conference for Machine Learning and Knowledge Extrac-
tion, 77-95. Springer.

Romero, O. 2019. Computer analysis of world chess cham-
pionship players. ICSEA 2019, 212.

Romstad, T.; Costalba, M.; and Kiiski, J. 2021. Stockfish
14.

Sadler, M.; and Regan, N. 2019. Game Changer. Alp-
haZero’s Groundbreaking Chess Strategies and the Promise
of AL Alkmaar. The Netherlands. New in Chess.

Sieusahai, A.; and Guzdial, M. 2021. Explaining Deep Re-
inforcement Learning Agents In The Atari Domain through
a Surrogate Model. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertain-
ment, volume 17, 82-90.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. na-
ture, 529(7587): 484-489.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, 1.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,

https:/

T.; et al. 2018. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science,
362(6419): 1140-1144.

Smith, R. 2004. Modern Chess Analysis. Gambit. ISBN
9781904600084

Spronck, P.; Sprinkhuizen-Kuyper, I.; and Postma, E. 2004.
Online adaptation of game opponent Al with dynamic
scripting. International Journal of Intelligent Games and
Simulation, 3(1): 45-53.

Trivedi, D.; Zhang, J.; Sun, S.-H.; and Lim, J. J. 2021.
Learning to Synthesize Programs as Interpretable and Gen-
eralizable Policies. Advances in Neural Information Pro-
cessing Systems, 34.

Tukmakov, V. 2020. Modern Chess Formula - The Pow-
erful Impact of Engines. Thinkers Publishing. ISBN
9789492510815.

Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically interpretable reinforcement

learning. In International Conference on Machine Learning,
5045-5054. PMLR.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature,
575(7782): 350-354.

Wilkins, D. E. 1979. Using patterns and plans to solve prob-
lems and control search. Stanford University.

Wing, J. M. 2008. Computational thinking and thinking
about computing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences, 366(1881): 3717-3725.

Zhou, Y. 2018. Rethinking Opening Strategy: AlphaGo’s
Impact on Pro Play. CreateSpace, 1(36): 212.

