Investigating the Application of Action Model Learning for Player Modeling

Abhijeet Krishnan
Principles of Expressive Machines (POEM) Lab
North Carolina State University
Raleigh, NC 27606
akrish13@ncsu.edu

Abstract

Player modeling attempts to create a computational model
which accurately approximates a player’s behavior in a game.
Most player modeling techniques rely on domain knowledge
and are not transferable across games. Additionally, player
models do not currently yield any explanatory insight about a
player’s cognitive processes, such as the creation and refine-
ment of mental models. In this paper, we present our findings
with using action model learning (AML), in which an action
model is learned given data in the form of a play trace, to learn
a player model in a domain-agnostic manner. We demonstrate
the utility of this model by introducing a technique to quanti-
tatively estimate how well a player understands the mechan-
ics of a game, and present a hypothetical evaluation method
to assess a model’s accuracy. We evaluate existing AML al-
gorithms in terms of their suitability for player modeling. We
find that current AML algorithms are performant but are un-
able to use prior models or failed actions to learn.

Introduction

Player modeling is the study of computational models of
players in games (Yannakakis et al. 2013). It sees varied and
widespread usage in today’s video game industry. Imangi
Studios, developers of the popular Temple Run (Imangi Stu-
dios 2011) series of mobile games, collect player telemetry
in order to analyse player behavior and provide customized
gameplay experiences (Studios 2019). Forza Motorsport 5
(Turn 10 Studios 2013) implements a Drivatar (Reynolds
2019) system which learns to mimic the player’s behavior in
the game and simulate the player in other races.

Despite the multitude of techniques used to build player
models, such as self-organizing maps (Drachen, Canossa,
and Yannakakis 2009), Bayesian networks (Yannakakis and
Maragoudakis 2005), and multi-layer perceptrons (Peder-
sen, Togelius, and Yannakakis 2010), many of them rely on
features extracted from domain knowledge of the game’s
rules and as such cannot be generalized easily, except per-
haps to games of the same genre. The inability to easily train
new models for different games using the same technique
presents a barrier to any single technique’s adoption.

Submitted to the Department of Computer Science at North Car-
olina State University in partial fulfillment for the Doctoral Written
Preliminary Qualifier Exam

Furthermore, while current techniques aim to predict
player actions, we argue that there is a corresponding need
to explain their underlying cognitive processes. There is em-
pirical evidence in cognitive science that game players build
mental models, knowledge structures capable of simulat-
ing the system they are interacting with and predicting and
explaining the outcomes of scenarios while playing games
(Boyan, McGloin, and Wasserman 2018). Mental models
may start out erroneous, but improve over time as the player
learns from which of their attempted actions succeed and
fail. We believe that mental model alignment is one of the
most important aspects of using games for impactful appli-
cations such as education and training, and that player mod-
eling techniques should be designed to yield insight into this
cognitive process.

To address these needs, we propose action model learn-
ing (AML), in which an action model is learned from play
traces, as a viable technique. Action models can be used to
learn player models in any game which can be represented in
a planning formalism like PDDL. There exists a rich body of
literature on learning action models from action traces which
we can leverage to learn action models.

In this paper, we describe the results of our investigation
into the application of action model learning to player mod-
eling. More generally, we argue that AML is a tractable
and domain-agnostic approach to player modeling, and that
the learned action model is a useful player model. We jus-
tify the tractability claim by successfully applying FAMA
(Aineto, Celorrio, and Onaindia 2019) to the task of learn-
ing a player model from action traces, measuring their ef-
ficiency on problems of various sizes as well as precision
and recall. We justify the domain-agnosticity claim by suc-
cessfully learning action models for two additional domains:
Hanoi (the Tower of Hanoi puzzle) and N-puzzle (a slid-
ing tile puzzle), using publicly available domain files' and
trajectories from FAMA’s evaluation dataset. We justify the
usefulness claim by presenting a technique to quantify a
player’s mechanical mastery of a game given their action
model-based player model. We evaluate a number of other
AML algorithms for the purpose of player modeling. We dis-
cuss the techniques’ advantages and limitations and suggest

'http://planning.domains/

avenues for future work.

Related Work

Player modeling is a relatively new field, previously stud-
ied under the umbrella of HCI in the form of user mod-
eling (Biswas and Springett 2018) and student modeling
(Chrysafiadi and Virvou 2013). Surveys on player modeling
provide useful taxonomies (Smith et al. 2011), an overview
of techniques that have been used for player modeling gen-
erally (Machado, Fantini, and Chaimowicz 2011) or for
MMORPGs (Harrison and Roberts 2011), and challenges
commonly encountered in the field, including the reliance on
knowledge engineering (Hooshyar, Yousefi, and Lim 2018)
that motivates our work.

Domain-agnostic approaches to player modeling have
been attempted before. Snodgrass, Mohaddesi, and
Harteveld (2019) describe a general player model using the
PEAS framework, which presents a theoretical framework
for providing game recommendations, but does not account
for in-game player behavior. Nogueira et al. (2014) use
physiological readings of players to model their emo-
tional response to game events. While domain-agnostic,
this technique relies on physiological data from sensors,
which is difficult to acquire. Our approach requires only
gameplay traces, which can be easily done by making
minor modifications to the game engine code. Deep neural
networks have been used to simulate the actions of human
players in interactive fiction games (Wang et al. 2018)
and MMORPGs (Pfau, Smeddinck, and Malaka 2018)
and to generate new levels in a platformer game based
on learned player preferences (Summerville et al. 2016).
These techniques rely only on easily obtainable input like
gameplay logs or video recordings, and do not use any
knowledge engineering to train the model. We believe our
approach has two advantages: a) that it does not require
as much data to learn, and, b) by generating a rule-based
model, offers more explanatory power for player behavior.

To the best of our knowledge, this is the first-known
application of AML to player modeling. The literature on
AML has primarily focused on learning sound action mod-
els for use by an automated planner, with little attention
paid to modeling the player’s cognitive processes. Human-
aware planning attempts to create planning agents which
can take human mental models into account when planning
(Chakraborti et al. 2017), while we treat a human as a plan-
ning agent and attempt to learn a domain model which mir-
rors their mental model as closely as possible. Serafini and
Traverso (2019) introduce a perception function which maps
sensor data to state variables in order to learn action mod-
els. We believe investigating player perception functions for
cases like player disability to learn action models would be
fruitful to pursue.

In this paper, we implicitly assume an action model as
an appropriate rule-based model with which to represent
a player’s mental model. There are many other rule-based
models and the field of inductive rule-learning is dedicated
to extracting these rules from a set of observations. Angluin
and Smith (1983) provides a theoretical background for in-
ductive inference and mentions context-free grammars and

regular expressions as examples of hypotheses that can be
inferred. (Novak, Lavra¢, and Webb 2009) surveys asso-
ciative rule-mining methods which model rules as a deci-
sion tree or if-then rules. The field of inductive logic pro-
gramming (ILP) models rules as first-order logic statements
(Muggleton and De Raedt 1994). SimStudent (Matsuda,
Cohen, and Koedinger 2015) is a system which uses ILP
to learn rules for solving simple algebra problems by ex-
pert demonstration. We choose action models to represent a
player’s mental model since we believe it is the more appro-
priate choice to represent knowledge of game mechanics.

Background
Action Model Learning

Action model learning (AML) is situated within the tradition
of automated planning, in which an action model describes
the preconditions and effects of each action an agent may
take in a world. Preconditions and effects are propositional
formulas over fluents (predicates whose truth changes with
time). A plan is a sequence of actions, each instantiated with
terms for each parameter position, such that the effects of
each action entail the preconditions of the action following
it. AML, then, is the problem of discovering an action model
from a set of observed plans.

Formally, an AML algorithm takes as in-
put a number of action traces, each a sequence
T = (Sp,a1,81,a2,82, - , a4y, Sy), where s; are states
and a; are actions, and returns as output an action model,
which is a specification of the preconditions and effects of
every action in the domain. These action traces are usually
assumed to be fully observed, i.e. every fluent of a state
is present, but various developments in AML algorithms
allow action models to be learned from action traces with
partially observed or noisy states as well. Theoretical
work in AML tries to bound the number of trajectories
required to learn a solution model (Walsh and Littman 2008;
Stern and Juba 2017). An action model is represented as a
STRIPS-style domain, with the most common representa-
tion format being PDDL. Evaluation of an action model is
usually done by calculating the number of missing or extra
predicates in the preconditions and effects of each action in
the learned model.

Sokoban

The primary domain used in development and testing is
the classic Japanese block-pushing puzzle game Sokoban,
which we use to demonstrate the feasibility of our approach.
We select it based on its relative minimalism and existing
formalizations in PDDL as part of the International Plan-
ning Competition (IPC) benchmark suite (Coles et al. 2012).
In Sokoban, there are stones (or crates) scattered around a
warehouse floor, which the player must push to certain spec-
ified locations around the warehouse, but can only push the
stones in cardinal directions, cannot climb over the stones or
other obstacles, and can only push one stone at a time. For
an overview of Sokoban’s rules and its characteristics as a
search problem, we refer readers to Junghanns and Schaef-
fer (1997). The specific representation of Sokoban we use is

Figure 1: A simple Sokoban level (the goal is on the same
cell as the player) rendered using PuzzleScript*

Figure 2: A more complex level, taken from IPC 2011

a domain that appeared in the 2011 International Planning
Competition,? modified to remove action costs.

Figures 1 and 2 describe two Sokoban levels of differing
complexity. The level in Figure 1 can be solved by moving
the player down, right, down, down, left, up, and finally up
to push the crate onto the goal.

Player Modeling with AML
Learning a model

We attempt to solve the unsupervised learning problem of
inferring an action model from a set of input trajectories
which most closely mirrors the player’s mental model of a
game’s mechanics. We choose to use AML algorithms for
this task.

An AML algorithm takes as input a set of action traces
or trajectories 7', and outputs an action model A, which is
a specification of the preconditions and effects of each ac-
tion in the domain. Algorithms may differ in the assump-
tions they make, with many algorithms assuming STRIPS-
style domains but improvements accounting for other fea-
tures of the PDDL specification such as quantifiers (Zhuo
et al. 2010), conditional effects (Oates and Cohen 1996) or
type hierarchies (Gregory and Cresswell 2015).

For player modeling, we assume that the input set of tra-
jectories are generated by a single player’s interaction with a
game. The game must be representable as a PDDL domain.

Zhttps://github.com/potassco/pddI-instances/blob/master/ipc-
2011/domains/sokoban-sequential-satisficing/domain.pddl
*https://www.puzzlescript.net/index.html

The domain representation is constrained by the AML algo-
rithm being used, since not all AML algorithms can support
the full set of PDDL features available.

The player is presented with an abstract interface to carry
out all of the possible actions in the game, irrespective of
whether they are applicable or not. If a chosen action can be
successfully performed in the current state, it is applied and
the new state is generated, adding a tuple (sp,e —a—Spost) tO
the trajectory. If the player selects an action which cannot be
carried out (the action’s preconditions are not met), then no
change is made to the current state and the action selected is
recorded as a failed action in the trajectory. Formally, these
are recorded as a tuple (s — ay — s) in the trajectory. Certain
AML algorithms (Amir and Chang 2008; Wang 1995) make
use of failed actions to improve their action model. Those
which do not can ignore the failed actions and use the rest of
the trajectory to discover an action model. Trajectories can
be discretized in any meaningful way, such as per level, or
per game session.

The AML algorithm is given the set of trajectories as in-
put and learns an action model. The action model we learn
over the input trajectories represents the player’s model of
the mechanics of the game given their interaction with it.
This assumes that every action in the domain of a game de-
fined in a planning formalism corresponds to a mechanic.

Using the model

Player models in literature have been used to perform a
variety of functions. Karpinskyj, Zambetta, and Cavedon
(2014) describe five ways in which players differ from each
other, namely by preferences, personality, experience, per-
formance and in-game behavior. These suggest avenues for
what a player model might be used to predict. Harrison and
Roberts (2011) explore how various player modeling tech-
niques might be applied to MMORPGs, using the specific
examples of interactive tutorials, targeted skill improvement,
quest offering and dynamic quests.

We present a technique to derive a quantitative estimate
of the player’s mastery of the game’s mechanics by compar-
ing the learned player model with the ground truth model.
We assume a ground truth domain model of the game is
available in PDDL. We believe this is a reasonable assump-
tion since our task is to learn the player’s representation of
the game mechanics, and not the actual game mechanics
themselves. Our technique is based on a proposed evalua-
tion technique for action models by Aineto, Celorrio, and
Onaindia (2019), which uses precision and recall as metrics.
We compare the learned action model to the ground truth
model and for each action count the number of predicates
in the learned model’s preconditions and effects which are
correct (true positives), extra (false positives) and missing
(false negatives). We use this confusion matrix to compute
the F7-score for every action in the model and report it as the
player’s proficiency score for a particular mechanic given
the model. We use the F}-score since it is a meaningful way
to combine precision and recall into a single number.

=2 precision - recall 0

precision + recall

The learned action model can also be treated as a game it-
self, with its rules based on the modeled player’s knowledge
of the actual game’s rules. This learned game represents a
way to meaningfully interact with a player’s mental model
and we believe has artistic merit.

Evaluating the model

Evaluation of a learned player model is typically done by
measuring how well the model’s predictions match ground
truth data. We have been unable to find a documented
method to directly elicit an action model from a human
player. Instead, we present a hypothetical method to evaluate
action models based on comparison between predictions re-
garding game state changes made by human players and the
learned action model. The human player is presented with
a quiz post their play session with questions consisting of
two types - 1) to assess their knowledge of action precon-
ditions, and 2) to assess their knowledge of action effects.
Questions of type 1 present the quiz taker with a game state
and an action, and ask them to predict whether the action
can be successfully performed in the shown state. Questions
of type 2 present the quiz taker with a game state, an action
possible in that state, and a post-state, and asks them to pre-
dict whether the action would transform the pre-state into
the shown post-state. The game states are snapshots of the
game as presented to the player. The learned action model
is used to generate predictions for each question in the quiz,
and its responses are compared with the player responses to
measure the accuracy of the model.

Evaluation

To determine baseline feasibility of action model learning
as an approach to player modeling, we start with an out-of-
the-box algorithm known as FAMA (Aineto, Celorrio, and
Onaindia 2019).

We use traces generated manually from two hand-crafted
levels (L1 and L-) and an instance from the IPC 2011 col-
lection (L3). The levels differ in complexity, with L; hav-
ing 7 actions in the optimal solution and L3 having 129 ac-
tions. We use FAMA with full state observability to success-
fully learn two action models M; and M from the first two
traces. Figure 3 shows the move action learned by both mod-
els. Table 1 shows the player proficiency scores predicted by
our model for each mechanic.

Mechanic name Fy-score
M, M,
move 0.267 0.250
push-to-nongoal 0.308 0.216
push-to—-goal 0.222 0.240

Table 1: Proficiency scores for each mechanic

To determine whether AML is a domain-agnostic player
modeling technique, we attempt to use it to learn player
models in two different domains, namely Hanoi and N-
puzzle. We source trajectories for both domains from
FAMA'’s evaluation dataset. We successfully learn two ac-

10

11

12

13

14

15

16

(:action move 1 (:action move
:parameters 2 :parameters
(?p — player 3 (?p - player
?from - 4 ?from -
location location
?to - location ?to - location
?dir - 6 ?dir -
direction) direction)
:precondition (7 :precondition (
and and
(?to) 8 (?to)
(?p 2from) 9 (?p ?from)
(? 10 (?from
from)) ?to ?2dir))
ceffect (and 11 reffect (and
(?from) 12 (?from)
(?p ?to) 13 (?p ?to)
(?from 14 (?to
?to ?dir))
(not (p? 15 (?
from)) from)
(not (?to 16 (not (?p ?
)))) from))
17 (not (?to

Figure 3: A comparison between the move action learned
by M; and M,

tion models for each domain (D), for Hanoi and D,, for N-
puzzle), from which we report the move action in Figure 4.

Comparison of AML Algorithms

We compare five AML algorithms along metrics we believe
are relevant to player modeling, namely scalability (as mea-
sured by computation time and memory usage), ability to
use previously learned action models, ability to use failed ac-
tions and accuracy. Scalability is important because we an-
ticipate player trajectories to contain hundreds of states and
actions and having an algorithm which can learn in near real-
time is valuable for providing real-time skill assessments us-
ing the model. The ability to use previously learned action
models is valuable because it allows us to take into account
trajectories from previous play sessions when learning new
models, thus making the models a closer representation of
the player’s mental model. We denote this by fanrr (7, @),
which indicates the ability of the AML algorithm f to use
as input «, which is a prior action model. The ability to use
failed actions is valuable since we hypothesize that it shares
similarities with the cognitive process by which players form
models of games and thus would help learn models which
are more accurate representations of players’ mental mod-
els. We denote this by (s — ay — s) € 7 which indicates
that failed action tuples are part of the input trajectory for
the AML algorithm. Lastly, accuracy is valuable because we
want our model to be representative of the player’s mental
model for the usefulness of its skill predictions.

The five algorithms we use are ARMS (Wu, Yang,
and Jiang 2005), LOCM (Cresswell, McCluskey, and West

10

(:action move

:parameters (20l

(:action move
:parameters (2ol

- object 202 - - tile 202 -

object 703 - position 203 -

object) position)
:precondition (:precondition (

and (?203) and (2?0l ?02)

(?0l) ((?03) (

20l ?02)) 203 202
:effect (and) (202

(not (203 ?203))

)) 4 ceffect (and

(not (20l ? 5 (not (20l ?

02)) 02))

(?202) 6 (2?0l ?03)

(7?70l 203) 7 (not (7?03

(201 2))

ol) 8 (?02))

(202 ? f ot .

01)) Listing 2: M,

Listing 1: Mj,

Figure 4: A comparison between the move action learned
by Dy, and D,

2013), LOCM2 (Gregory and Cresswell 2015), LOUGA
(KucCera and Bartak 2018) and FAMA (Aineto, Celorrio, and
Onaindia 2019). The implementation for ARMS is sourced
from the authors’ website . The source code is for the HT-
NML (Zhuo et al. 2010; 2009) algorithm which behaves as
ARMS when not using hierarchical tasks. The implementa-
tions for LOCM, LOCM2 and LOUGA are sourced from the
LOUGA implementation and comparison tool for Windows
provided by the authors. We run LOUGA for 100 genera-
tions. The implementation for FAMA is sourced from the
author’s GitHub repository ® We use a machine with an In-
tel Core i7-9750H CPU and 16 GB RAM to compare the
elapsed time and memory usage of for each algorithm. We
attempt to learn a single action model for each of L, Lo and
L3 using each AML algorithm. We measure elapsed time
and memory usage via wall clock time and maximum resi-
dent set size as output by the Unix time utility. On Win-
dows, we measure these using the self-reported elapsed time
and the maximum private bytes as reported by the Perfor-
mance Monitor utility. faarr,(7,a) and (s —ay—s) € T are
manually entered based on the algorithm’s properties. Ac-
curacy is measured by conducting the evaluation procedure
described earlier, however we have not done so in this work,
hence we do not report it. Our findings are listed in Table 2.
For reproducibility, we share all the code used to obtain our
results in a GitHub repository’

Computation time and memory usage for most AML al-
gorithms evaluated seem to scale well with the trajectory
size. However, none of them are able to use a previously
learned action model or failed actions to augment their learn-

Shttp://xplan-lab.org/#SourceCode
Shttps://github.com/daineto/meta-planning
https://github.com/AbhijeetKrishnan/expertise-estimation

ing process. Algorithms which are able to account for previ-
ously learned action models (Zhuo, Nguyen, and Kambham-
pati 2013) and failed actions (Wang 1995) were not readily
available to us for testing. We do not report data for FAMA
on L3 since it ran out of memory on our test machine.

Discussion and Future Work

To the best of our knowledge, our work is the first applica-
tion of AML to player modeling. We demonstrated the fea-
sibility of AML as a domain-agnostic player modeling ap-
proach by evaluating an existing AML algorithm for the task
of player modeling, and we presented a technique to mea-
sure the player’s mechanical proficiency using the learned
model. Based on these findings, we believe action model
learning has the potential to serve as useful player model-
ing technique in a wide range of games.

Our claim that action models can serve as general player
models rests on the assumption that the game be repre-
sentable in a planning formalism such as PDDL. This is a
strong assumption and it might not be practically possible
to represent large categories of games which operate in real-
time (although there is some prior work is using PDDL for
real-time domains (Bartheye and Jacopin 2009)). We con-
jecture that games which fall under the genres of turn-based
strategy (e.g. Pokémon series (Game Freak 1996-2019),
Chrono Trigger (Square 1995)), tile-based board games (e.g.
CATAN® (CATAN GmbH 2002), chess) and tile-based puz-
zle games (e.g. Sokoban, Baba is You (Hempuli 2019)) are
most amenable to representation in a planning formalism.
There remain concerns regarding the PDDL authoring bur-
den in creating such games (Strobel and Kirsch 2020).

Our proposed measure of player competency will also
benefit from refinement in future work. Quantitatively esti-
mating a player’s mechanical proficiency leaves out higher-
order skills learned by combining the use of mechanics that
players need to learn in order to become proficient at a game
(Cook 2007). Future work will attempt to model and mea-
sure the acquisition of higher-order skills.

We were motivated in this project by a hypothesis that the
cognitive process of mental model formation (Wasserman
and Koban 2019) could help design better AML algorithms
for player modeling. AML algorithms which update action
models based on failed actions, which are used similarly
in mental model alignment (Boyan, McGloin, and Wasser-
man 2018), provide a theoretical basis for correlation of the
learned action models with human mental models. However,
we have not yet conducted an experiment to measure how
well our learned models match human players’ mental mod-
els; we plan to do this in future work.

Our proposed evaluation method measures similarity be-
tween the learned player model and the player’s mental
model along one narrowly defined function i.e. predicting
the validity of an action or next state. It is desirable to have
a more fine-grained evaluation procedure which compares
directly against a ground-truth action model obtained from
the player. This could be done by providing an interface to
humans for directly manipulating pieces of an action model
in order to construct an action model closest to their mental
model. Existing research into providing intuitive interfaces

Time (s)

Memory (MB)

Algorithm L, L, Ly L. Ly Ly famrp(r,) (s—ay—s)er
ARMS 0.05 0.01 0.67 17.06 16.66 91.75 X X
LOCM 0.21 0.19 0.15 2150 3435 74.64 X X
LOCM2 0.25 0.20 0.10 20.93 3372 7097 X X
LOUGA 0.92 0.77 328 2506 37774 64.04 X X
FAMA 10.59 1572.60 — 21.19 4632.52 — X X

Table 2: Results of AML algorithm evaluation

for rule-based systems (Card and Martens 2019) could prove
useful.

Even then, we run into the issue that certain predicates in
the domain are not represented in the game as shown to the
player. For example, in the Sokoban domain we use, there
exists a predicate (?location - location) to
denote that a location does not contain the player or a stone.
However, this is not communicated to the player visually,
and the predicate’s existence must be inferred by exploration
of the game’s mechanics. Therefore, any evaluation method
which asks the player to construct an action model of their
player model must account for this mismatch of representa-
tion.

Conclusion

We have proposed and justified the use of AML as a feasible,
domain-agnostic and useful technique for player modeling.
We have described how to use any existing AML algorithm
to learn a player model, how to use it to quantify player skill
and how to evaluate the learned player model. We have eval-
uated a number of existing AML algorithms for their suit-
ability for player modeling. We found that most AML algo-
rithms meet the performance requirements for player mod-
eling, but lack the ability to utilize failed actions or take
prior action models into account; properties which are useful
for player modeling. We believe new AML algorithms with
these properties, along with heuristics derived from mental
model formation, will provide better results for player mod-
eling.

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence 275:104 — 137.
Amir, E., and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research 33:349-402.
Angluin, D., and Smith, C. H. 1983. Inductive inference:
Theory and methods. ACM Comput. Surv. 15(3):237-269.
Bartheye, O., and Jacopin, E. 2009. A real-time pddl-based
planning component for video games. In AIIDE.
Biswas, P., and Springett, M. 2018. User modeling. The Wi-
ley Handbook of Human Computer Interaction Volume 143.
Boyan, A.; McGloin, R.; and Wasserman, J. A. 2018. Model
matching theory: A framework for examining the alignment

between game mechanics and mental models. Media and
Communication 6(2):126—136.

Card, A., and Martens, C. 2019. The ceptre editor: A struc-
ture editor for rule-based system simulation. In 2019 IEEE
Symposium on Visual Languages and Human-Centric Com-
puting (VL/HCC), 133-137.

Chakraborti, T.; Kambhampati, S.; Scheutz, M.; and Zhang,
Y. 2017. AI challenges in human-robot cognitive teaming.
CoRR abs/1707.04775.

Chrysafiadi, K., and Virvou, M. 2013. Student modeling
approaches: A literature review for the last decade. Expert
Systems with Applications 40(11):4715 —4729.

Coles, A.; Coles, A.; Olaya, A. G.; Jiménez, S.; L6pez, C. L.;
Sanner, S.; and Yoon, S. 2012. A survey of the seventh
international planning competition. Al Magazine 33(1):83—
88. Copyright - Copyright Association for the Advancement
of Artificial Intelligence Spring 2012; Document feature - ;
Diagrams; Last updated - 2018-10-06.

Cook, D. 2007. The chemistry of game design. Ac-
cessed May 15, 2020 from https://www.gamasutra.com/
view/feature/129948/the_chemistry_of_game_design.php.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. Knowledge
Engineering Review 28(2):195-213.

Drachen, A.; Canossa, A.; and Yannakakis, G. N. 2009.
Player modeling using self-organization in tomb raider: Un-
derworld. In 2009 IEEE Symposium on Computational In-
telligence and Games, 1-8.

Gregory, P, and Cresswell, S. 2015. Domain model acqui-
sition in the presence of static relations in the lop system. In
Twenty-Fifth International Conference on Automated Plan-
ning and Scheduling.

Harrison, B., and Roberts, D. L. 2011. Using sequential
observations to model and predict player behavior. In Pro-

ceedings of the 6th International Conference on Foundations
of Digital Games, 91-98.

Hooshyar, D.; Yousefi, M.; and Lim, H. 2018. Data-driven
approaches to game player modeling: A systematic literature
review. ACM Comput. Surv. 50(6).

Junghanns, A., and Schaeffer, J. 1997. Sokoban: A challeng-
ing single-agent search problem. In In IJCAI Workshop on
Using Games as an Experimental Testbed for AI Reasearch.
Citeseer.

Karpinskyj, S.; Zambetta, F.; and Cavedon, L. 2014. Video
game personalisation techniques: A comprehensive survey.
Entertainment Computing 5(4):211 — 218.

Kucera, J., and Bartdk, R. 2018. Louga: learning planning

operators using genetic algorithms. In Pacific Rim Knowl-
edge Acquisition Workshop, 124-138. Springer.

Machado, M. C.; Fantini, E. P.; and Chaimowicz, L.
2011. Player modeling: Towards a common taxonomy.
In 2011 16th international conference on computer games
(CGAMES), 50-57. IEEE.

Matsuda, N.; Cohen, W. W.; and Koedinger, K. R. 2015.
Teaching the teacher: Tutoring simstudent leads to more ef-
fective cognitive tutor authoring. International Journal of
Artificial Intelligence in Education 25(1):1-34.

Muggleton, S., and De Raedt, L. 1994. Inductive logic pro-
gramming: Theory and methods. The Journal of Logic Pro-
gramming 19:629-679.

Nogueira, P. A.; Aguiar, R.; Rodrigues, R. A.; Oliveira,
E. C.; and Nacke, L. 2014. Fuzzy affective player models:
A physiology-based hierarchical clustering method. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.

Novak, P. K.; Lavrag, N.; and Webb, G. I. 2009. Supervised
descriptive rule discovery: A unifying survey of contrast set,
emerging pattern and subgroup mining. Journal of Machine
Learning Research 10(2).

Oates, T., and Cohen, P. R. 1996. Learning planning op-
erators with conditional and probabilistic effects. In Pro-
ceedings of the AAAI Spring Symposium on Planning with
Incomplete Information for Robot Problems, 8§6—94.

Pedersen, C.; Togelius, J.; and Yannakakis, G. N. 2010.
Modeling player experience for content creation. I[EEE
Transactions on Computational Intelligence and Al in
Games 2(1):54-67.

Pfau, J.; Smeddinck, J. D.; and Malaka, R. 2018. Towards
deep player behavior models in mmorpgs. In Proceedings
of the 2018 Annual Symposium on Computer-Human Inter-
action in Play, CHI PLAY 18, 381-392. New York, NY,
USA: Association for Computing Machinery.

Reynolds, M. 2019. How forza 5’s cloud-based drivatars
work. https://www.digitalspy.com/videogames/xbox-
one/a530468/forza-motorsport-5-how-the-xbox-one-

racers-drivatar-system-works. Accessed: January 23, 2020.

Serafini, L., and Traverso, P. 2019. Incremental learning
of discrete planning domains from continuous perceptions.
arXiv preprint arXiv:1903.05937.

Smith, A. M.; Lewis, C.; Hullet, K.; Smith, G.; and Sullivan,
A. 2011. An inclusive view of player modeling. In Proceed-
ings of the 6th International Conference on Foundations of
Digital Games, 301-303.

Snodgrass, S.; Mohaddesi, O.; and Harteveld, C. 2019. To-
wards a generalized player model through the peas frame-
work. In Proceedings of the 14th International Conference
on the Foundations of Digital Games, FDG ’19. New York,
NY, USA: Association for Computing Machinery.

Stern, R., and Juba, B. 2017. Efficient, safe, and probably
approximately complete learning of action models. CoRR
abs/1705.08961.

Strobel, V., and Kirsch, A. 2020. Mypddl: Tools for ef-
ficiently creating pddl domains and problems. In Knowl-

edge Engineering Tools and Techniques for Al Planning.
Springer. 67-90.

Studios, I. 2019. Imangi studios - privacy policy. https:/
www.imangistudios.com/privacy/privacy-policy.html. (Ac-
cessed: January 23, 2020).

Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O.
2016. Learning player tailored content from observation:
Platformer level generation from video traces using Istms.
In Twelfth Artificial Intelligence and Interactive Digital En-
tertainment Conference.

Walsh, T. J., and Littman, M. L. 2008. Efficient learning of
action schemas and web-service descriptions. In Proceed-
ings of the 23rd National Conference on Artificial Intelli-
gence - Volume 2, AAAT'08, 714-719. AAAI Press.

Wang, P.; Rowe, J.; Min, W.; Mott, B.; and Lester, J.
2018. High-fidelity simulated players for interactive narra-
tive planning. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAT’ 18, 3884-3890.
AAAI Press.

Wang, X. 1995. Learning by observation and practice: An
incremental approach for planning operator acquisition. In
Machine Learning Proceedings 1995. Elsevier. 549-557.

Wasserman, J. A., and Koban, K. 2019. Bugs on the brain:
A mental model matching approach to cognitive skill acqui-
sition in a strategy game. Journal of Expertise/June 2(2).

Wu, K.; Yang, Q.; and Jiang, Y. 2005. Arms: Action-relation
modelling system for learning action models. Proceedings
of ICKEPS.

Yannakakis, G. N., and Maragoudakis, M. 2005. Player
modeling impact on player’s entertainment in computer
games. In Ardissono, L.; Brna, P.; and Mitrovic, A., eds.,
User Modeling 2005, 74-78. Berlin, Heidelberg: Springer
Berlin Heidelberg.

Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André, E.
2013. Player modeling.

Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Munoz-
Avila, H. 2009. Learning htn method preconditions and
action models from partial observations. In IJCAI, 1804—
1810.

Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18):1540 — 1569.

Zhuo, H. H.; Nguyen, T.; and Kambhampati, S. 2013. Refin-
ing incomplete planning domain models through plan traces.
In Twenty-Third International Joint Conference on Artificial
Intelligence.

