Investigating the Application of Action Model Learning for Player Modeling

by Abhijeet Krishnan

Outline

- Introduction
- Motivation
- Related Work
- Background
 - Planning Terminology
 - Action Model Learning (AML)
 - Sokoban
- AML for Player Modeling
 - Learning
 - Using
 - Evaluating
- Evaluation
 - Feasibility, Usefulness, Domain-agnosticity
 - Comparing AML Algorithms
- Discussion & Future Work
- Conclusion

Introduction

- This paper explores the application of a technique from the area of planning to player modeling
- The technique is called **action model learning** (AML)
- A framework of how to use it for player modeling
- An evaluation of it as player modeling technique

Player Modeling

Opponents

Too easy!

Too difficult!

Puzzles

Too basic!

Too advanced!

Player Modeling (contd.)

- What it is: the study of computational models of players in games (Yannakakis et. al. 2013)
- Why we do it: making predictions about the player
- Examples
 - Drivatars in *Forza Motorsport 5* (Turn 10 Studios)
 - Class recommendation in *The Elder Scrolls IV: Oblivion* (Bethesda Softworks)
 - Self-organizing maps in *Tomb Raider: Underworld* (Drachen, Canossa and Yannakakis 2009)
- Player modeling questions -
 - What do we model?
 - How do we model?
 - Why do we model?

Player Modeling: Practice

Drivatars in Forza Motorsport 5

There are rats and goblins down there... but from what I've seen of you. I'm guessing you are an experienced Scout. Am I right?

Class recommendation in The Elder Scrolls IV: Oblivion

Player Modeling: Research

Screenshot from Tomb Raider: Underworld

U-Matrix showing player clusters obtained from highest-performing SOM

Self-organizing maps in *Tomb Raider: Underworld* (Drachen, Canossa and Yannakakis 2009)

Motivation

Lack of **domain-agnostic** player modeling techniques

• Reliance on knowledge-engineering documented in player modeling survey (Hooshyar, Yousefi and Lim 2018)

Need to **explain** players' cognitive processes

 Players' build mental models of games which change over time (Boyan, McGloin and Wasserman 2018)

Related Work

- Domain-agnostic approaches to player modeling
 - Theoretical model-based
 - Snodgrass, Mohaddesi, and Harteveld (2009)
 - Physiological readings
 - Noguiera et. al. (2014)
 - Deep learning
 - Wang et. al. (2018)
 - Pfau, Smeddinck, and Malaka (2018)
 - Summerville et. al. (2016)
- Action model learning for humans
 - Human-aware planning (Chakraborti et. al. 2017)

Background: Planning Terminology

- *Planning*: finding a sequence of *actions* to reach a desired goal *state* in a specific *domain*
- States modeled as collection of facts about the world (*predicates*)
- Actions modeled as <preconditions, effects>
- Domain: a description of the "physics" of the world
- Action model: set of actions in the domain
- PDDL is a modeling language commonly in planning

Background: Action Model Learning (AML)

- Motivated by the difficulty of authoring domain models (Kambhampati 2007)
- Used to learn an action model from *plan traces* (*trajectory*)
- Plan trace: sequence of state-action transitions

Sample action model (with one action)

(trajectory

(:objects dir-down - direction [...])

```
(:init (is-goal pos-01-01) [...])
```

(:action (push-to-nongoal player-01 stone-01 pos-01-01 pos-01-02 pos-01-03 dir-down))

```
(:state (is-goal pos-01-01) [...])
```

```
Sample trajectory (truncated for brevity)
```

Background: Sokoban

- Tile-based puzzle game
- Objective is to push all blocks onto goal tiles
- Frequently used to test automated planners (Coles et. al. 2012)

Sokoban Demo Link

Outline

- Introduction
- Motivation
- Related Work
- Background
 - Planning Terminology
 - Action Model Learning (AML)
 - o Sokoban
- AML for Player Modeling
 - Learning
 - Using
 - Evaluating
- Evaluation
 - Feasibility, Usefulness, Domain-agnosticity
 - Comparing AML Algorithms
- Discussion & Future Work
- Conclusion

AML for Player Modeling

- Learning a player model using AML
- Using the player model to predict something useful about the player
- Evaluating the player model for correlation with the player's mental model

Learning the model

Failed actions: Actions chosen to be taken by the player, but are prohibited due to its preconditions not being met

A_n: actions possible in the domain (with objects they act upon)

Learned action model treated as player model

Action model represents player's knowledge of game mechanics

Domain file (empty)

Learning the model (contd.)

16

Using the model

 Outputs a quantitative measure of a player's understanding of game mechanics

Learned	Reference	Category
(clear ?to)	(clear ?to)	correct
(at ?p ?from)	(at ?p ?from)	correct
(is-nongoal ?from)		extra
	(move-dir ?from ?to ?dir)	missing
(clear ?from)	(clear ?from)	correct
(at ?p ?to)	(at ?p ?to)	correct
(move-dir ?from ?to ?dir)		extra
(not (at ?p ?from))	(not (at ?p ?from))	correct
(not (clear ?to))	(not (clear ?to))	correct

- Method based on Aineto, Celorrio and Onaindia (2019)
- Algorithm is as follows -
 - Compare learned action model with ground truth action model
 - For each action, count the number of predicates in preconditions and effects in the learned model which are
 - Correct (true positive)
 - Extra (false positive)
 - Missing (false negative)
 - Compute F-1 score for each action
- F-1 score represents a player's understanding of the game mechanics

Evaluating the model

- Goal: compare learned action model with player's mental model (of game mechanics)
- No documented method of eliciting action model from player
- Hypothetical evaluation method, not yet used in actual user study -
 - Test knowledge of mechanics through prediction of action success (preconditions) and validity of post-state (effects)
 - Present questions of 2 types
 - i. State + Action -> is the action applicable in this state?
 - ii. State + Action = New state -> is the new state what we actually get?
 - Compare player predictions with predictions made using learned action model to measure accuracy

Evaluation: Feasibility, Usefulness, Domain-agnosticity

- Feasibility: can this method be used to learn a player model?
 - Yes, we successfully learn player models using FAMA with the Sokoban domain
- Usefulness: does the learned player model have some functionality?
 - Yes, we make predictions regarding player's mechanical knowledge using the learned player model
- Domain-agnosticity: can this method be used to learn player models across multiple domains?
 - Yes, we successfully learn player models across two different domains (N-puzzle, Hanoi) using the same method

Evaluation: Comparing AML Algorithms

- Goal: comparing various AML algorithms for their suitability to player modeling
- Metrics
 - Time taken
 - Memory consumed
 - Ability to use previous action models
 - Ability to use failed actions
 - ← Accuracy
- Dataset: manually generated trajectories from 3 Sokoban levels of increasing complexity (L1, L2, L3)

Evaluation: Comparing AML Algorithms (contd.)

Algorithm		Time (s)		Memory (MB)			f	
Algorium	L_1	L_2	L_3	L_1	L_2	L_3	$JAML(7,\alpha)$	$\langle s - a_f - s \rangle \in \mathcal{T}$
ARMS	0.05	0.01	0.67	17.06	16.66	91.75	×	X
LOCM	0.21	0.19	0.15	21.50	34.35	74.64	×	X
LOCM2	0.25	0.20	0.10	20.93	33.72	70.97	×	X
LOUGA	0.92	0.77	3.28	25.06	37.74	64.04	×	X
FAMA	10.59	1572.60		21.19	4632.52		×	X

Discussion & Future Work

- Evaluation of player models learned using AML
 - Eliciting action models from players directly
 - Mismatch between representation and implementation
 - Predicates in domain might not be presented to the player
 - Actions in the domain might not correspond to the interface provided to the player
- Improving AML algorithms
 - Incorporating cognitive theories of mental model formation
 - Failed actions
 - Previously learned models
 - New AML algorithm for player modeling Blackout (Krishnan, Williams and Martens 2020) at AIIDE
 2020
- Domain-agnosticity of AML
 - Pros: easily applicable to multiple games
 - Cons: requires games to be representable in PDDL

Conclusion

- We find that AML is a viable technique for domain-agnostic player modeling
- We present a method to use it to quantify player's understanding of game mechanics
- We found existing AML algorithms to be performant for player modeling
- We suggested improvements to make AML algorithms better player modeling techniques
- We propose the evaluation of action model-based player models as a useful challenge to solve

References

- Yannakakis, G. N.; Spronck, P.; Loiacono, D.; and André, E.2013. Player modeling
- A. Drachen, A. Canossa and G. N. Yannakakis, "Player modeling using self-organization in Tomb Raider: Underworld," 2009 IEEE Symposium on Computational Intelligence and Games, Milano, 2009, pp. 1-8, doi: 10.1109/CIG.2009.5286500.
- Hooshyar, D.; Yousefi, M.; and Lim, H. 2018. Data-driven approaches to game player modeling: A systematic literature review. ACM Comput. Surv. 50(6).
- S. Kambhampati, Model-lite planning for the web age masses: the challenges of planning with incomplete and evolving domain models, in: National Conference on Artificial Intelligence, (AAAI-07), 2007.
- Snodgrass, S.; Mohaddesi, O.; and Harteveld, C. 2019. Towards a generalized player model through the peas framework. InProceedings of the 14th International Conference on the Foundations of Digital Games, FDG '19. New York, NY, USA: Association for Computing Machinery.
- Nogueira, P. A.; Aguiar, R.; Rodrigues, R. A.; Oliveira, E. C.; and Nacke, L. 2014. Fuzzy affective player models: A physiology-based hierarchical clustering method. In Tenth Artificial Intelligence and Interactive Digital Entertainment Conference.
- Wang, P.; Rowe, J.; Min, W.; Mott, B.; and Lester, J.2018. High-fidelity simulated players for interactive narrative planning. InProceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI '18, 3884–3890. AAAI Press.
- Pfau, J.; Smeddinck, J. D.; and Malaka, R. 2018. Towards deep player behavior models in mmorpgs. In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY '18, 381–392. New York, NY, USA: Association for Computing Machinery.
- Summerville, A.; Guzdial, M.; Mateas, M.; and Riedl, M. O.2016. Learning player tailored content from observation: Platformer level generation from video traces using lstms. In Twelfth Artificial Intelligence and Interactive Digital Entertainment Conference.
- Chakraborti, T.; Kambhampati, S.; Scheutz, M.; and Zhang, Y. 2017. AI challenges in human-robot cognitive teaming. CoRRabs/1707.04775.
- Serafini, L., and Traverso, P. 2019. Incremental learning of discrete planning domains from continuous perceptions.arXiv preprint arXiv:1903.05937.
- Matsuda, N.; Cohen, W. W.; and Koedinger, K. R. 2015. Teaching the teacher: Tutoring simstudent leads to more effective cognitive tutor authoring. International Journal of Artificial Intelligence in Education 25(1):1–34.
- Coles, A.; Coles, A.; Olaya, A. G.; Jim'enez, S.; L'opez, C. L.;Sanner, S.; and Yoon, S. 2012. A survey of the seventh international planning competition. Al Magazine 33(1):83–88. Copyright Copyright Association for the Advancement of Artificial Intelligence Spring 2012; Document feature ;Diagrams; Last updated 2018-10-06.
- Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning action models with minimal observability. Artificial Intelligence 275:104 137.
- Reynolds, M. 2019. How forza 5's cloud-based drivatar's work.

https://www.digitalspy.com/videogames/xbox-one/a530468/forza-motorsport-5-how-the-xbox-one-racers-drivatar-system-works. Accessed: January 23, 2020.

Questions?

	25