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Introduction
● This paper explores the application of a technique from the area of planning to 

player modeling
● The technique is called action model learning (AML)
● A framework of how to use it for player modeling
● An evaluation of it as player modeling technique
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Player Modeling
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Too easy!

Too difficult!

Too basic!

Too advanced!

Opponents Puzzles



Player Modeling (contd.)
● What it is: the study of computational models of players in games (Yannakakis et. 

al. 2013)
● Why we do it: making predictions about the player
● Examples

○ Drivatars in Forza Motorsport 5 (Turn 10 Studios)
○ Class recommendation in The Elder Scrolls IV: Oblivion (Bethesda Softworks)
○ Self-organizing maps in Tomb Raider: Underworld (Drachen, Canossa and Yannakakis 2009)

● Player modeling questions -
○ What do we model?
○ How do we model?
○ Why do we model?
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Drivatars in Forza Motorsport 5

Class recommendation in The Elder Scrolls IV: Oblivion 
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Player Modeling: Practice



Player Modeling: Research 
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U-Matrix showing player clusters obtained from 
highest-performing SOMScreenshot from Tomb Raider: Underworld

Self-organizing maps in Tomb Raider: Underworld (Drachen, Canossa and 
Yannakakis 2009)



Motivation

Lack of domain-agnostic player modeling techniques
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● Reliance on knowledge-engineering documented in player modeling survey 
(Hooshyar, Yousefi and Lim 2018)

Need to explain players’ cognitive processes
● Players’ build mental models of games which change over time (Boyan, 

McGloin and Wasserman 2018)



Related Work
● Domain-agnostic approaches to player modeling

○ Theoretical model-based
■ Snodgrass, Mohaddesi, and Harteveld (2009)

○ Physiological readings
■ Noguiera et. al. (2014)

○ Deep learning
■ Wang et. al. (2018)
■ Pfau, Smeddinck, and Malaka (2018)
■ Summerville et. al. (2016)

● Action model learning for humans
○ Human-aware planning (Chakraborti et. al. 2017)
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Background: Planning Terminology
● Planning: finding a sequence of actions to reach a desired goal state in a specific 

domain
● States modeled as collection of facts about the world (predicates)
● Actions modeled as <preconditions, effects>
● Domain: a description of the “physics” of the world
● Action model: set of actions in the domain
● PDDL is a modeling language commonly in planning
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Background: Action Model Learning (AML)
● Motivated by the difficulty of authoring domain models (Kambhampati 2007)
● Used to learn an action model from plan traces (trajectory)
● Plan trace: sequence of state-action transitions

(:action move
   :parameters (?p - player ?from ?to - location 
?dir - direction)
   :precondition (and (at ?p ?from)
                      (clear ?to)
                      (MOVE-DIR ?from ?to ?dir)
                      )
   :effect       (and (not (at ?p ?from))
                      (not (clear ?to))
                      (at ?p ?to)
                      (clear ?from)
                      )
   )

(trajectory

(:objects dir-down -  direction [...])

(:init (is-goal pos-01-01) [...])

(:action (push-to-nongoal player-01 stone-01 
pos-01-01 pos-01-02 pos-01-03 dir-down))

(:state (is-goal pos-01-01) [...])

)

Sample action model (with one action) Sample trajectory (truncated for brevity) 11



Background: Sokoban
● Tile-based puzzle game
● Objective is to push all blocks onto goal tiles
● Frequently used to test automated planners (Coles et. al. 2012)

Sokoban Demo Link
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https://www.puzzlescript.net/play.html?p=d960b2a4d591840485280f594dfb8258
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AML for Player Modeling
● Learning a player model using AML
● Using the player model to predict something useful about the player
● Evaluating the player model for correlation with the player’s mental model
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Learning the model

Game

A1 A2

A3 A4

A5 A6Player
Trajectory 

Abstract Interface
(+ failed actions)

AML 
Algorithm

Previous action 
model

Domain file (empty)

Action model

Failed actions: Actions 
chosen to be taken by the 
player, but are prohibited due to 
its preconditions not being met

An: actions possible in the 
domain (with objects they act 
upon)

Learned action model treated as 
player model

Action model represents 
player’s knowledge of game 
mechanics
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Learning the model (contd.)

↑

← →

↓Player

Sokoban

Trajectory (PDDL-like syntax)

FAMA

Empty Sokoban domain file (in PDDL)
Action model (in PDDL)

(trajectory

(:objects dir-down -  direction [...])

(:init (is-goal pos-01-01) [...])

(:state (is-goal pos-01-01) (is-nongoal pos-02-01) 
[...]))

(:action move
   :parameters (?p - player ?from ?to - 
location ?dir - direction)
   :precondition (and (at ?p ?from)
                      (clear ?to)
                      (MOVE-DIR ?from ?to 
?dir)
                      )
   :effect       (and (not (at ?p ?from))
                      (not (clear ?to))
                      (at ?p ?to)
                      (clear ?from)
                      )
   )

define (domain 
sokoban-sequential)
  (:requirements :typing)
  (:types thing location 
direction - object
          player stone - thing)
  (:predicates (clear ?l - 
location) [...]
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Using the model
● Outputs a quantitative measure of a 

player’s understanding of game 
mechanics
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● Method based on Aineto, Celorrio and Onaindia (2019)
● Algorithm is as follows -

○ Compare learned action model with ground truth action model 
○ For each action, count the number of predicates in preconditions and effects in the learned model 

which are
■ Correct (true positive)
■ Extra (false positive)
■ Missing (false negative)

○ Compute F-1 score for each action

● F-1 score represents a player’s understanding of the game mechanics



Evaluating the model
● Goal: compare learned action model with player’s mental model (of game 

mechanics)
● No documented method of eliciting action model from player
● Hypothetical evaluation method, not yet used in actual user study -

○ Test knowledge of mechanics through prediction of action success (preconditions) and validity of 
post-state (effects)

○ Present questions of 2 types -
i. State + Action -> is the action applicable in this state?

ii. State + Action = New state -> is the new state what we actually get?
○ Compare player predictions with predictions made using learned action model to measure accuracy
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Evaluation: Feasibility, Usefulness, Domain-agnosticity

● Feasibility: can this method be used to learn a player model?
○ Yes, we successfully learn player models using FAMA with the Sokoban domain

● Usefulness: does the learned player model have some functionality?
○ Yes, we make predictions regarding player’s mechanical knowledge using the learned player model

● Domain-agnosticity: can this method be used to learn player models across 
multiple domains?

○ Yes, we successfully learn player models across two different domains (N-puzzle, Hanoi) using the 
same method 
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Evaluation: Comparing AML Algorithms
● Goal: comparing various AML algorithms for their suitability to player modeling
● Metrics

○ Time taken
○ Memory consumed
○ Ability to use previous action models
○ Ability to use failed actions
○ Accuracy

● Dataset: manually generated trajectories from 3 Sokoban levels of increasing 
complexity (L1, L2, L3)
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Evaluation: Comparing AML Algorithms 
(contd.) 
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Discussion & Future Work
● Evaluation of player models learned using AML

○ Eliciting action models from players directly
○ Mismatch between representation and implementation

■ Predicates in domain might not be presented to the player
■ Actions in the domain might not correspond to the interface provided to the player

● Improving AML algorithms
○ Incorporating cognitive theories of mental model formation

■ Failed actions
■ Previously learned models

○ New AML algorithm for player modeling - Blackout (Krishnan, Williams and Martens 2020) at AIIDE 
2020

● Domain-agnosticity of AML
○ Pros: easily applicable to multiple games
○ Cons: requires games to be representable in PDDL
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Conclusion
● We find that AML is a viable technique for domain-agnostic player modeling
● We present a method to use it to quantify player’s understanding of game 

mechanics
● We found existing AML algorithms to be performant for player modeling
● We suggested improvements to make AML algorithms better player modeling 

techniques
● We propose the evaluation of action model-based player models as a useful 

challenge to solve
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Questions?

25


