
ABSTRACT

KRISHNAN, ABHIJEET. Interpretable Strategy Synthesis for Competitive Games. (Under the
direction of Chris Martens and Arnav Jhala).

Competitive games admit a wide variety of player strategies and emergent, domain-specific

concepts that are not obvious from mere examination of their rules. An example is the fork

in chess, where observing the pattern of a piece attacking two other pieces provides useful

information regarding which move ought to be played. Expert agents trained on these games

exhibit many useful strategies in their gameplay, but these are difficult for human players to

understand and adopt. Algorithmically generating “explanations” for these AI learned strategies

could help human players become more competent in the game, improving their decision-

making and leading to more victories.

In this document, I propose to investigate approaches to the problem of interpretable strat-

egy synthesis i.e., the problem of finding algorithmic approaches to learning useful strategies

for games that can be understood and applied by a human player. In preliminary work, I was

able to formally define the problem of interpretable strategy synthesis and propose a unified

framework for describing the problem, along with situating extant works in that framework. I

was also able to use the framework to learn strategies for chess. This proposal describes how the

problem of interpretable strategy synthesis may be approached for MicroRTS using an answer

set programming-based approach. My hypothesis is that different game domains will require

domain-specific strategy representations in order to improve their in-game effectiveness and

interpretability for a human player.

The work proposed in this dissertation will benefit the esports analytics industry by pro-

viding an additional, powerful tool to gain insight into player strategies. It will also benefit

explainable RL (XRL) research by contributing an additional technique to explain the behavior

of RL agents.
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CHAPTER

1

INTRODUCTION

1.1 Motivation

Esports (or e-sports, eSports) has emerged as a rapidly growing industry in recent years, and

is projected to reach a market volume of $12.5B by 2030 (Research 2022). It has become a

mainstream form of entertainment, attracting millions of viewers and players worldwide (Lynch

2017). As a result, it has also attracted the attention of researchers and analysts who seek to

improve the performance of esports athletes, teams and organizations (Reitman et al. 2020).

Esports analytics is a relatively new field that utilizes statistical analysis and data mining

techniques to gain insights into the performance of esports players, teams and games. Formally,

Schubert et al. (2016) defines it as the process of using esports related data, primarily behavioural

telemetry but also other sources, to find meaningful patterns and trends in said data, and the

communication of these patterns using visualization techniques to assist with decision-making

processes. There also exist commercial enterprises that provide esports analytics as a service

for player improvement (Esports 2023; Mobalytics 2023).

One such novel source of esports-related data has come from recent advancements in

reinforcement learning (RL). These have led to game-playing agents capable of competing with

and even outperforming the best human experts at various games like chess (Silver et al. 2018),

Go (Silver et al. 2016), Shogi (Li et al. 2020), Mahjong (Silver et al. 2018), StarCraft II (Vinyals
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et al. 2019) and Dota 2 (OpenAI et al. 2019). These agents do not simply take advantage of faster

reaction and calculation abilities, but are actually employing new, better strategies that lead to

more victories. Borrowing from Jeanette Wing’s definition of computational thinking (Wing

2008), these agents appear to have better abstractions than human experts for the games they’re

trained to play.

Strategies in esports (or games in general) are policies that tend to lead to favorable states

for players. An example of a strategy in the board game chess is center control – having your

own pieces occupy or threaten the center squares where they have maximum mobility and

control over the rest of the board. Players learn to improve in two ways: 1) by identifying good

strategies themselves with sufficient practice; and 2) by learning from the ones shared by more

experienced players through an established vocabulary. The problem of strategy synthesis asks

whether such strategies could be automatically identified by a learning algorithm such that

they may be communicated to other players.

Strategies have been found, described, and shared by players across a wide variety of

games. In the board game Go, the ladder is a basic capturing technique that new players must

learn to identify and play out correctly (hun Cho 1997). In basketball, the Triangle offense is a

well-known team strategy that was instrumental in leading the Chicago Bulls to several NBA

championships (Rose 2012). In fighting games, a frame trap is when you stop attacking an

opponent during a sequence of your attacks in order to bait them into starting a move and

possibly countering them (Silman 2021). Finding useful strategies for playing a game – and an

expressive vocabulary to describe them – can help players get better at a game.

Despite the existence of powerful agents that use non-interpretable strategies in various

competitive games, we still see human competition continue to thrive, with these agents leading

human players to new ways of thinking and a re-evaluation of long-held beliefs about the

game (Nelson 2019). These discoveries have, so far, involved manual or tool-assisted analysis

of the games played by the agents (Sadler and Regan 2019; Zhou 2018). If the agents could

themselves explain their strategies and decision-making to human players, I hypothesize that

these explanations would help the human players improve.

1.2 Thesis Statement

The research I propose is focused on the problem of Interpretable Strategy Synthesis (ISS)

for games and how it can be approached for a variety of game domains. I will formalize the

problem of ISS for games by providing clear definitions for relevant terms and defining metrics

for success. I will approach the problem of ISS for two game domains that are qualitatively

different from each other, namely chess and MicroRTS (Ontanon 2021). Finally, I will investigate
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the factors affecting the interpretability of a synthesized strategy by a human player. The

proposed dissertation will answer the following research questions:

RQ1. How do we formally define the problem of Interpretable Strategy Synthesis?

In Chapter 2, I discuss how prior works have attempted to approach the problem of ISS

implicitly for specific games. Subsequent works have explicitly mentioned the attempt to

approach the problem of ISS, but have not situated it in the context of a formal problem

definition, and thus lack meaningful comparison to existing work or the ability to be

reused across games. The issue of interpretability has also not been adequately addressed.

Providing a unified framework for ISS will help researchers compare and reuse their

strategy models and learning algorithms across multiple game domains. I answer this in

Chapter 3.

RQ2. How do we approach the problem of Interpretable Strategy Synthesis for the game of chess?

Chess has a long history as a competitive game and as a testbed for AI research. It has

both a rich literature of competitive strategies and a thriving software ecosystem of chess-

playing agents. This usefully positions it as a game to approach ISS and compare any

learned strategies to known ones in. In the following RQs, I address how the problem

of ISS may be approached for chess by defining a computational representation of a

chess strategy and proposing a corresponding learning algorithm, namely, one that uses

inductive logic programming (ILP).

RQ2(a) Could we represent known chess tactics as a learnable, computational model of a

chess-playing policy and develop metrics to show that they suggest better moves than

a random baseline?

The framework for ISS proposed as part of RQ1 needs to be shown to be feasible in

synthesizing useful strategies. In Sections §4.1.1, §4.1.2 and §4.1.3, I show how we

may computationally model a chess strategy and translate known chess tactics into

the model. I show that these tactics produce better moves on average compared to

a random player, thus answering RQ2(a).

RQ2(b) Do the chess strategies learned using ILP outperform a random baseline in how closely

their divergence scores approximate a beginner player?

While the feasibility of the framework proposed as part of RQ1 is to be evaluated in

RQ2(a), it remains to be seen whether a suitable learning method can be developed

to learn chess strategies from gameplay. In Section §4.1.4, I show how we can use

inductive logic programming (ILP), a symbolic machine learning (ML) method, to

serve as this learning algorithm.
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RQ2(c) Do the chess strategies learned by an ILP system incorporating the changes of the new

predicate vocabulary and precision/recall-based constraints produce moves better

than those learned by an ILP system without these modifications?

The chess strategies learned by the system proposed as part of RQ2(b) do not pro-

duce moves comparable to a human beginner, let alone a strong chess-playing

agent. In Section §4.1.5, I show how modifications to the learning algorithm can be

made to improve the quality of the strategies it learns.

RQ3. How do we approach the problem of ISS for the game of MicroRTS?

MicroRTS is a small implementation of an RTS (real-time strategy) game, designed to

perform AI research. In comparison to chess, it is real-time and partially observable.

While there exist many handwritten agent scripts to play the game, there is not as much

literature on strategies that human players use. In the following RQs, I propose an ap-

proach to the problem of ISS for MicroRTS which uses a programmatic representation of

a strategy derived from a specific context-free grammar, and an answer-set programming

(ASP) based approach to learn it. I also propose to investigate the interpretability aspect

of the synthesized strategies by running a user study to find which factors of the strategy

model most affect interpretability.

RQ3(a) How does an ASP-based approach towards developing a synthesizer for the SynProS

competition compare to other synthesizers in this competition?

The SynProS competition (Moraes 2021a) provides a strategy model for MicroRTS

in the form of a programmatic script derived from a context-free grammar (CFG).

A synthesizer entered into the competition must generate a script for an input

map in this derived from this CFG, which is then evaluated using a round-robin

tournament run against the scripts synthesized by other synthesizers, as well as

some baseline handwritten scripts, and measuring their win rates. In Section §4.2.3,

I propose investigating an approach that uses answer-set programming to design a

synthesizer that can search for scripts that achieve a high win rate.

RQ3(b) Which features of a MicroRTS strategy model have a statistically significant correla-

tion with the interpretability of said strategy?

While a lot of research has focused on the synthesis portion of ISS, there is a lack

of work studying the interpretability of the synthesized strategies. I propose to run

an exploratory user study that will use a set of pre-synthesized MicroRTS strategies

that vary along various variables as detailed in Section §4.2.4, and ask participants

to rate the interpretability of a strategy using a task-oriented survey. Finding which
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factors most correlate with interpretability will allow future researchers to develop

methods that optimize for those factors when synthesizing strategies.

The work proposed in this dissertation will benefit the esports analytics industry by provid-

ing an additional, powerful tool to gain insight into player strategies. It will benefit explainable

RL (XRL) research by contributing an additional technique to explain the behavior of RL agents.

As such, my overall thesis statement is —

Player growth and understanding in many competitive games is achieved through the com-

munication of concise, interpretable strategies that convey information used to aid decision-

making in said games. Learning high-quality strategies that are both interpretable and, once

understood, allow a player to make better decisions in-game, would be valuable to players look-

ing to improve. A computational model of a game strategy, along with a learning method, could

meet those goals and impact the fields of competitive esports and explainable AI.
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CHAPTER

2

RELATED WORK

2.1 Interpretable Strategy Synthesis

The problem of strategy synthesis can be framed in RL terms as that of learning a game-playing

policy. However, most existing, state-of-the-art policies are much too complex for any human

to memorize and simulate. For example, the default neural network (NN) model 1 provided with

the chess-playing agent Stockfish 15.1 (Romstad et al. 2022) consists of over 100,000 trainable

parameters, which is impossible for a human chess player to keep reliably in memory. A non-

rigorous attempt at doing so with a much simpler model was also not successful (Deutsch 2017)

The goal of interpretable strategy synthesis (ISS) is to learn game-playing policies that can be

interpreted by humans. This could involve being able to simulate the model in order to play

the game, or being able to read the learned policy. The overarching goal is for the synthesized

strategies to provide some value to players in terms of their in-game performance.

The earliest works in ISS primarily learned rule-based strategies. The rules are either se-

lected from an authored rulebase, as in Spronck et al. (2004); Canaan et al. (2018), or derived

from a representation like a context-free grammar, as in Mariño et al. (2021); de Freitas et al.

(2018). Rule-based strategies are primarily selected based on a qualitative appeal to their inter-

pretability. However, none of these works attempt to empirically quantify the interpretability

1https://tests.stockfishchess.org/api/nn/nn-52471d67216a.nnue
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of their rule-based strategies.

Given the prevalence of rule-based strategy representations in previous ISS work, most

learning methods involve searching over the space of rules to find a combination of them that

optimize some performance criteria, usually win rate or score. These methods typically consist

of derivative-free optimization techniques (Rios and Sahinidis 2013) like genetic algorithms,

simulated annealing and local search.

The domains that have been tackled in prior ISS work have either been games with small

action spaces, such as Blackjack (de Mesentier Silva et al. 2016), Nonograms (Butler et al.

2017) and Hanabi (Canaan et al. 2018), or simplified versions of more complex games such as

MicroRTS (Mariño et al. 2021; Medeiros et al. 2022; Mariño and Toledo 2022). Spronck et al.

(2004) tackles just the battle system in the commercial single-player game Neverwinter Nights.

Evaluation of strategies is primarily done by comparing their performance against hand-

authored strategies. None of these works attempt to formally define what an “interpretable”

strategy is, create metrics to measure the interpretability of a strategy, or attempt to evaluate

the interpretability of a strategy with a user study. There are only appeals made to the inter-

pretability of synthesized strategies due to the human-readability of the rule-based strategy

models. Butler et al. (2017) compares synthesized strategies to known, existing strategies and

measures how many of the known strategies were replicated by the synthesized set. Mariño

et al. (2021); Mariño and Toledo (2022) provide a qualitative analysis of learned strategies.

2.1.1 Pattern Learning in Chess

Patterns have been used to suggest moves and guide playing strategies in middle-game posi-

tions (Berliner 1975; Pitrat 1977; Wilkins 1979) and endgames (Huberman 1968; Bramer 1977;

Bratko 1982). (Levinson and Snyder 1991) used weighted patterns in their Morph system as

an evaluation function to guide playing strategy. Recent work has attempted to directly probe

neural network engines to test for the presence of human concepts (McGrath et al. 2021).

(Morales 1992) developed the PAL system to learn first-order patterns in chess using ILP.

2.2 Explainable Reinforcement Learning

Humans usually come up with strategies by observing what works in their own play, or studying

the gameplay of other experts. Since human players can be treated as a game-playing policy,

the problem of interpretable strategy synthesis is equivalent to that of explaining the policy of

human players, or more generally, any game-playing agent.

Attempts to make RL agent policies amenable to human interpretation have been pursued in
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the field of explainable reinforcement learning (XRL). Puiutta and Veith (2020) provide a survey

of recent XRL methods. An interpretability technique that has received some attention is that

of training an inherently interpretable surrogate model which matches the performance of the

original agent. Options for this surrogate model that have been investigated include decision

trees (Bastani et al. 2018; Coppens et al. 2019; Sieusahai and Guzdial 2021) and programmatic

policies (Verma et al. 2018; Trivedi et al. 2021).

A common theme in early XRL (and the more general field of explainable artificial intelli-

gence) work is the imprecise definition of “interpretability” and a lack of metrics to quantify

it. For example, Verma et al. (2018) evaluate the performance of their methods empirically

but their appeal to their programmatic policy’s interpretability rests on its representation as

readable rules. A measurement of performance, but not interpretability, is repeated in other

XAI works as well (Coppens et al. 2019; Liu et al. 2019; Shu et al. 2017; Hayes and Shah 2017).

This lack of precision in defining and measuring interpretability led to the work by Doshi-

Velez and Kim (2017) which provides a definition of interpretability grounded in psychology,

and a taxonomy for evaluating interpretability. Subsequent work has attempted to quantify the

interpretability of proposed XAI techniques (Madumal et al. 2020; Slack et al. 2019; van der Waa

et al. 2018) and studied the nature of interpretability itself (Kliegr et al. 2021; Lage et al. 2019).
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CHAPTER

3

A FRAMEWORK FOR INTERPRETABLE

STRATEGY SYNTHESIS

The problem of interpretable strategy synthesis (ISS) is first mentioned in Butler et al. (2017). It

identifies it as a subset of automated game analysis, and implicitly solves it using a specific

strategy model for the game of Nonograms. It evaluates the performance of the synthesized

strategies, but doesn’t make an attempt to evaluate their interpretability. As detailed in Chap-

ter 2, prior works have attempted to solve the problem of ISS implicitly for specific games.

Subsequent works have explicitly mentioned the attempt to solve the problem of ISS, but have

not situated it in the context of a formal problem definition. In this chapter, I will attempt

to formally define the problem of ISS by abstracting common elements and providing clear

definitions, thereby answering RQ1.

3.1 Problem Definition

Let us be given a game environment G modeled as a finite, episodic Markov decision process

〈S,A(s ),P,R,γ〉, where —

• S is the finite set of legal game states reachable from the start state s0,
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• A(s ) is the set of legal actions that can be taken in a state s ∈ S,

• P is the state transition function that models the game’s dynamics,

• R is the reward function describing the game’s win conditions, and

• γ is a discount factor between [0, 1]

We define a strategy σ for G at timestep t as a probability distribution over the available

actions in a state, for a subset of states in the state space. The states for whichσ is defined are

termed as the states for which the strategy is applicable, and is given by Aσ ⊆ S.

σ(a |s ) .=P[At = a |St = s ],∀s ∈Aσ, a ∈A(s ) (3.1)

The definition of a strategy in equation (3.1) borrows from the notion of a policy as used in

RL (Sutton and Barto 2018) as well as game-theoretic notions of a strategy (Boros et al. 2012).

Intuitively, a strategy describes a pattern or feature of a game state that comes up often in

regular gameplay and that tends to influence the actions taken in states with that feature. A

strategy is not a general policy and cannot be used to sample an action in states outside the set

of applicable states.

A strategy model (M) is a computational program that can be run to realize equation (3.1).

A strategy is an instance of a strategy model. The strategy model serves as a template for a

strategy that a learning algorithm must output. In practice, it is tightly coupled to the learning

algorithm and could incorporate domain-specific knowledge to improve its performance or

interpretability. Examples of strategy models used in literature are if-else rules or programmatic

scripts derived from a domain-specific language.

I propose the notion of an interpretability measure (I), which is a function that returns

a score for how interpretable a particular strategyσ is. Since the interpretability measure is

intended to be an objective function which must be optimized for the ISS problem, it ought to

be computational in nature. Obtaining human-oriented measures of interpretability might be

prohibitively expensive if used for training, and ought to be used only for evaluating the learned

strategy models. Most current research in ISS does not define an interpretability measure, nor

do they conduct an empirical evaluation of the interpretability of the learned strategy models

(see Table 3.1).

The ISS problem 〈G,M,R,I〉 is then the problem of finding a strategy modelσ∗ that simul-

taneously optimizes both reward and interpretability. This is described in Equation (3.2).

σ∗
.= arg max

σ
R(σ)I (σ),σ ∈M (3.2)
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Paper Domain Model Algorithm R I

Spronck et al.
(2004)

Neverwinter
Nights

authored
rules

dynamic
scripting

win rate –

de Mesentier Silva
et al. (2016)

Blackjack if-else rules several search
algorithms

score –

Butler et al. (2017) Nonograms condition-
action
rule

SMT solver coverage –

Canaan et al. (2018) Hanabi authored
rules

genetic
algorithm

score –

de Freitas et al.
(2018)

Mario AI
Framework

CFG-based
DSL script

genetic
algorithm

level score –

Mariño et al. (2021) MicroRTS CFG-based
DSL script

local search win rate –

Krishnan and
Martens (2022a)

Chess FO logic rules ILP coverage,
divergence

–

Mariño and Toledo
(2022)

MicroRTS CFG-based
DSL script

genetic
algorithm

win rate –

Medeiros et al.
(2022)

MicroRTS,
Can’t Stop

CFG-based
DSL script

SA, UCT win rate –

Table 3.1: List of works in ISS and their classification according to the proposed ISS framework.
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CHAPTER

4

ALGORITHMS FOR INTERPRETABLE

STRATEGY SYNTHESIS

I propose to investigate various algorithms to solve the ISS problem for a variety of game

domains. Primarily, I will restrict the scope of my investigation to two specific domains – 1)

chess and 2) MicroRTS. These have been chosen for the large quantity of existing research

and literature available on both of them, and the qualitative differences between the domains.

For example, chess is a turn-based, fully-observable game, whereas MicroRTS is a real-time,

partially observable game. The differences between the domains could inform ISS approaches

that generalize across a variety of game types.

4.1 Chess

The earliest known precursor to the game of chess was a game called chaturanga first played in

India in the 7th century CE. Its modern form took shape in Spain in the 15th century (Averbakh

2012). This long history has led to a wealth of study and analysis of the game over time, which

has only been accelerated with the advent of chess-playing computers (chess engines). This is

useful because it provides a rich set of existing player strategies to compare against.

Chess’ extensive history and appeal as a test of intelligence has led it to be called the
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drosophila1 of artificial intelligence (McCarthy 1990). It has been a mainstay of AI research from

the invention of the digital computer (Claude 1950) to the neural network revolution (Silver

et al. 2018). There has been a lot of research investigating the idea of using patterns to guide a

computer to play chess is not new. Section §2.1.1 examines some of this research.

For the game of chess, I present a model for a human-readable chess strategy, inspired

by documented chess tactics, for playing chess (Krishnan and Martens 2022b). I use this to

model known chess tactics from literature. Using the novel metrics of coverage and divergence,

I show that these tactics produce better moves than a random baseline. This answers RQ2(a).

I next present a system that uses a modified ILP system to optimize divergence for learning

chess strategies from gameplay data (Krishnan and Martens 2022a). This system can learn

chess strategies from positions drawn from play traces of human vs. human games. It requires

no more domain knowledge than the base rules of chess. I show that the learned strategies

generalize well to real-world chess positions and produce moves that outperform a random

player. This answers RQ2(b). Finally, I improve upon this system by introducing new constraints

to reduce the search space, and a new predicate vocabulary. Using an ablation study, I show

that these changes significantly (p < 0.01) reduce the difference in strength between the moves

suggested by the chess strategies, and the ground truth (Krishnan et al. 2023). This answers

RQ2(c).

4.1.1 Strategy Model for Chess

Tactics in chess are maneuvers that take advantage of short-term opportunities (Seirawan 2005,

Chapter 1). They are a move or series of moves that bring about an immediate advantage for the

player. They are identified by motifs – positional patterns that indicate whether a tactic might

exist in the given position. An example of a tactic is the fork, where a piece simultaneously

attacks two opponent pieces at once (see Figure 4.1).

Our strategy model for chess uses the concept of a chess tactic. Formally, we define our

strategy model for chess (hereafter referred to as a tactic) as a first-order logic rule expressed in

Prolog using a particular predicate vocabulary. As seen in Figure 4.2, the rule head of the tactic

consists of the variables Position, From and To. The input state is described by Position,

which is also expressed in first-order logic using our predicate vocabulary.From andTodescribe

the output action, namely, the move which begins from the square From and ends on the square

To. This replicates the long algebraic notation for moves used in the Universal Chess Interface

(UCI) protocol, an open communication protocol allowing chess engines to interact with user

interfaces (Kahlen 2004).

1fruit fly; easily bred and thus extensively used in genetics research
2https://lichess.org/training/4pEpj
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Figure 4.1: An example of a fork from a Lichess puzzle2. The white knight on d5 simultaneously
checks the opponent king on f6 and attacks the rook on c7.

14



tactic(Position, From, To)←
feature_1(· · · ),
feature_2(· · · ),
...
feature_n(· · · )

Figure 4.2: Our tactic model expressed in Prolog pseudocode. Every feature_i clause is a
rule defined in the predicate vocabulary.

A single tactic, or even a set of tactics, does not represent complete policy for playing chess.

This is because we might encounter a position for which no tactic matches. In this case, our

model cannot make a move. There might also be positions to which multiple tactics apply, in

which case an arbitration process for selecting a single move among the various suggestions is

not obvious.

If the tactic is provided as a query to the Prolog interpreter with a grounded instance of

Position and non-ground move variables, it will attempt to unify the latter with ground

moves (Sterling and Shapiro 1994). The variable binding(s) (i.e., moves) it finds are treated as

the action distribution defined on the state, with every found move being equi-probable, and

every other move accorded a probability of 0.

Our usage of first-order logic to model chess tactics is motivated by the following reasons —

1. Chess tactics are an important concept that human players use to think about chess (Sz-

abo 1984) and are useful in chess education (Gobet and Jansen 2006).

2. First-order logic has been extensively used to model chess patterns (see Section §2.1.1).

3. Logic rules are commonly acknowledged to be interpretable and have a long history of

research (Zhang et al. 2021).

4.1.2 Metrics to Evaluate Chess Strategy Models

A computational representation of a chess strategy (tactic) is not enough; we need a compu-

tational evaluation metric to guide any potential learning system towards “good” tactics and

away from “bad” tactics. Characteristics of good tactics are — 1) they produce strong moves,

i.e., they produce moves that tend to lead to winning game states, and 2) they are encountered

relatively frequently in the states reached during typical gameplay. To realize these goals, we

introduce two metrics – coverage and divergence.
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4.1.2.1 Coverage

A tacticσ’s coverage for a set of positions P is calculated as —

PA
.= P ∩Aσ (4.1)

Coverage(σ, P ) .=
|PA|
|P |

(4.2)

Coverage is the fraction of positions in a given set to which the tactic is applicable. If P is

representative of positions encountered in games, coverage is a useful measure of how likely it

is that the tactic can be used to make moves in games. A low coverage value indicates that the

tactic is situational, whereas a high coverage value indicates that the tactic is general.

4.1.2.2 Divergence

In order to find good moves, chess engines (chess-playing agents) must have some way of

evaluating a board position to produce a numerical score. A good move is one which results

in the maximum increase of this evaluation. In RL terms, a chess engine must have a good

state-value function Vπ.

Classical chess engines used a collection of hand-crafted heuristics to evaluate a posi-

tion (Bijl and Tiet 2021). Modern neural-network based engines use a combination of heuristics

and neural network models trained on millions of positions to produce evaluations. These

evaluations are standardized to be reported in centipawns (Cp), or roughly 1/100ths of the value

of a pawn (Guid and Bratko 2017). Positive values indicate white is favoured, and negative

values indicate black is favoured. A position evaluated to be +1 roughly corresponds to an

advantage of a single pawn for white. If a sequence of moves leading to a forced checkmate is

found (the condition for winning in chess), then that is reported instead.

To measure the quality of moves suggested by a tactic, we extend a metric previously used

to analyse world chess champions (Guid and Bratko 2006, 2011; Romero 2019). A chess engine

E is used that can provide a position evaluation function vE (s ). From this, we can obtain a

move evaluation function qE (s , a ) as follows —

qE (s , a ) =
∑

s ′,r

P(s ′, r |s , a )[r + vE (s
′)] (4.3)

= vE (s
′), s ′ is non-terminal (4.4)

Equation equation (4.4) follows from equation (4.3) since rewards in chess are 0 for non-
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terminal states, γ = 1, and chess rules are deterministic. A chess engine could evaluate a

position to be a ‘Mate in X’ rather than a numerical score. In this case, we assign an arbitrary

large value to the evaluation.

Given two moves a1, a2 made in a position s , we can calculate their difference dE (s , a1, a2)

as —

dE (s , a1, a2)
.=| qE (s , a1)−qE (s , a2) | (4.5)

We can now define the divergence of a tactic from a set of examples P as the average

difference in evaluation between the moves suggested by the tactic and the ground truth

move —

DivergenceE (σ(·), P ) .=
1

|PA|

∑

(s ,a1)∈PA

∑

a2∈A(s )

σ(a2|s )dE (s , a1, a2) (4.6)

Divergence is also reported in units of centipawns (Cp). Divergence of a tactic from the

ground truth is low and close to 0 when its suggestions are similar in engine evaluation to the

ground truth moves, and takes on large values when it differs significantly. Divergence is a

useful metric to measure how closely a tactic approximates a reference policy.

We do not introduce a measure I for the interpretability of a chess tactic. This is a useful

area for future work.

4.1.3 Evaluation of Known Chess Tactics

In a proof-of-concept study of the ISS framework proposed in Chapter 3, I show how the

symbolic strategy model (tactics) for chess as described in Section §4.1.1 can be learned using

this framework. I use patterns learned by an existing inductive logic programming (ILP) system

called PAL (Patterns and Learning) (Morales 1992) to derive these tactics. I then present an

evaluation of a set of tactics obtained from PAL against a random baseline using the metrics

defined in Section §4.1.2. In showing that the learned tactics resemble a weak chess-playing

program, but are unable to outperform a strong one, I answer RQ2(a).

4.1.3.1 Background

4.1.3.1.1 PAL System The PAL (Patterns and Learning) system was introduced in Morales

(1992). It attempts to use ILP to synthesize patterns for chess play, which are expressed using a
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can_check(S1,P1,(X1,Y1),S2,king,(X2,Y2),(X3,Y3),Pos1) ←
contents(S1,P1,(X1,Y1),Pos1),
contents(S2,king,(X2,Y2),Pos1),
other_side(S1,S2),
¬ in_check(S2,(X2,Y2),P1,(X1,Y1),Pos1),
make_move(S1,P1,(X1,Y1),(X3,Y3),Pos1,Pos2),
in_check(S2,(X2,Y2),P1,(X3,Y3),Pos2).

Figure 4.3: PAL rule for the can_check pattern. A piece (P1) can check the opponent’s King
after moving to (X3,Y3).

subset of Horn clause logic. It contributes a predicate vocabulary for expressing these patterns

and chess positions as Horn clauses. The pattern-learning problem is framed as an ILP problem,

for which a heuristically-constrained version of the rlgg (relative least general generalization)

algorithm is used to induce plausible hypotheses. Patterns learned can be static and not involve

any piece movement, or be dynamic and describe multi-move tactics. We expand upon how

the PAL system formally defines and synthesizes these chess patterns.

4.1.3.1.1.1 Pattern Formalism A pattern in PAL is formally defined as a non-recursive

Horn clause of the form

Head→D1, D2, · · · , Dn , F1, F2, · · · , Fm

where,

• Head is the head of the pattern definition

• The Di are “input” predicates used to describe the position and represent pieces involved

in the pattern

• The Fj are instances of definitions which are either provided as background knowledge

or learned by PAL, and represent the conditions (relations between pieces and places) to

be satisfied by the pattern.

An example of a checking move pattern, where a move that puts the opponent king in

check is suggested, is reproduced from the paper in Figure 4.3. A key predicate is make_move,

which determines whether a pattern is static or dynamic. The contents predicates are used

to describe the position on the board. The remaining predicate definitions are provided as

background knowledge.
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4.1.3.1.1.2 Pattern Synthesis The input to the PAL generalization algorithm is a set of

pattern definitions (both predefined and learned) along with a description of a chess position

(as ground unit clauses). The algorithm extends Buntine’s method for constructing the rlgg

of two clauses to multiple clauses. It uses the following constraints and heuristics to limit

hypothesis size and increase the algorithm’s generalisation steps -

• Disallowing variables in the head or body of a rule which are not connected to a literal

i.e., not equal to a variable of that literal

• Labeling constants occurring in the ground literals of a rule body to make patterns

piece-invariant

• Restricting the legal moves from a position to only be those which introduce a new

predicate name or remove an existing predicate name

PAL uses an automatic example generator to manually guide the generalization algorithm

towards learning desired concepts. Given an example of the target concept, the generator

perturbs the example to create a new example for which a classification label must be provided.

To restrict the example space searched, the automatic example generator attempts to generate

examples which specialize the current hypothesis in case of a prior positive example, or gener-

alize it in case of a prior negative example. We refer interested readers to the original thesis for

further details.

4.1.3.2 Methodology

4.1.3.2.1 Implementation using PAL We use the PAL system to synthesize tactics. We select

seven patterns that PAL was shown to learn, and modify them to output a move suggestion.

These patterns and their verbal definitions are listed in Table 4.1. All patterns learned other

than pin are 1-ply dynamic patterns, which means they include a single make_move predicate

in the rule body looking ahead one move. We modify these patterns to introduce a suggestion
predicate with the same variables as make_move. For pin, which is a static pattern as learned by

PAL, we convert it into a dynamic pattern as shown in Figure 4.4 and introduce thesuggestion
predicate in the same way.

4.1.3.3 Evaluation

We wish to investigate whether the synthesized tactics tend to suggest good moves to play. We

do this by measuring coverage and divergence for each of our tactics over a set of positions

using both a strong and a weak reference engine. For our strong reference engine, we use
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pin(S1,P1,(X1,Y1),S2,king,(X2,Y2),S2,P3,(X3,Y3),(X4,Y4),Pos1) ←
sliding piece(P1,(X1,Y1),Pos1),
make_move(S1,P1,(X1,Y1),(X4,Y4),Pos1,Pos2)
sliding piece(P1,(X4,Y4),Pos2),
stale(S2,P3,(X3,Y3),Pos2),
threat(S1,P1,(X4,Y4),S2,P3,(X3,Y3),Pos2),
in_line(S2,king,(X2,Y2),S2,P3,(X3,Y3),S1,P1,(X4,Y4),Pos2).

Figure 4.4: Modified PAL rule for the pin pattern to convert it into a tactic

Pattern Definition
can_threat A piece (P1) can threaten another piece (P2) after making a move

to (X3,Y3)
can_fork A piece (P1) can produce a fork to the opponent’s King and piece

(P3) after making a move to (X4,Y4)
can_check A piece (P1) can check the opponent’s King after a moving to (X3,Y3)
discovered_check A check by piece (P2) can be “discovered” after moving another

piece (P1) to (X4,Y4)
discovered_threat A piece (P1) can threaten an opponent’s piece (P3) after moving

another piece (P2) to (X4,Y4)
skewer A King in check by a piece (P1) “exposes” another piece (P3) when

it is moved out of check to (X4,Y4)
pin A piece (P3) cannot move because it will produce a check on its

own side by piece (P1)

Table 4.1: Patterns learned by the PAL system that are used to create tactics

Stockfish 14 (Romstad et al. 2021), the winner of the TCEC 2020 Championship (Haworth and

Hernandez 2021). For our weak reference engine, we use Maia Chess (McIlroy-Young et al.

2020), a chess engine trained to produce human-like moves. We use the maia1 model, which

is targeted toward 1100 ELO (a measure of relative playing strength, and roughly equal to a

beginner). We limit the search depth to 1-ply for both Stockfish 14 and Maia 1100 to resemble

our tactics. As a baseline, we use a random tactic which is applicable to all positions and

produces a random legal move in the position. We limit the number of suggestions from a tactic

to 3. For ease of implementation, we manually translated the tactics from Prolog definitions to

Python functions. We use 5000 games from the January 2013 archive of standard rated games

played on lichess.com (lichess.org 2021). For each game, we generate positions by iterating

through the move list, making the move, and adding the resulting position to the evaluation

set. In total, we generate 325,830 positions.

20



4.1.3.4 Results and Analysis

We summarize the results of our evaluation in Table 4.2.

From the high coverage values obtained, we conclude that tactics like can_threat and

discovered_threat are too general, whereas tactics likediscovered_check are too specific.

Tactics like can_check, can_fork and skewer strike a balance between these extremes.

From the divergence metrics calculated using Maia-1100 (our weak engine), we see that

most of our tactics have lower divergence scores than our random baseline, indicating that they

tend to produce moves which are evaluated somewhat similarly to a weak engine’s best moves.

For Stockfish 14, however, all our tactics have higher divergence scores than random, indicating

that they do not tend to produce moves similar to a strong engine. Thus, we qualitatively

conclude that our tactics resemble that of a beginner chess player.

Tactic Coverage
Divergence

SF14 Maia
can_threat 0.96 378.94 9.22
can_check 0.45 549.19 4.02
can_fork 0.32 676.45 4.67
discovered_check ≈0 338.55 18.64
discovered_threat 0.96 375.97 1.19
skewer 0.22 748.4 5.41
pin 0.79 526.45 4.9
random 1 328.09 8.28

Table 4.2: Coverage and DCG for each tactic

4.1.3.5 Conclusion and Future Work

We have described a symbolic sub-policy model for chess inspired by the pattern-action model

of chess tactics. We have used patterns learned by an ILP system to construct these tactics.

We have contributed a metric for measuring the divergence of these tactics to a reference

chess-playing agent. We evaluated a set of tactics learned by a chess pattern learning system

using our metric to find that they resembled a weak engine, but were not similar to a strong

one.

We use patterns learned by PAL to obtain our tactics. However, PAL uses manual labeling of

generated examples to learn specific concepts, and requires additional effort to convert the

learned patterns into tactics for our model. We aim to investigate the automatic learning of
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tactics from a dataset of chess positions and move suggestions using ILP as implemented by

modern systems like Popper (Cropper and Morel 2021). Future work could investigate alternate

ILP algorithms to use our divergence metric as a loss function to optimize tactics for (Evans

and Grefenstette 2018).

Our tactic model is loosely inspired by how chess tactics are learned and practiced. However,

our tactics are limited to looking 1-ply in the future i.e., they can only recognize the presence of

a matching pattern in the immediately next position. Many chess tactics suggest combinations

of moves, a series of moves where the matching pattern shows up only in a particular sequence

(see Figure 4.5). Extending the tactic model to express and recognize such combinations will

be a useful avenue for future work. We also wish to investigate the expression of longer-term

plans from chess literature like centre control and pawn structure using tactics.
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Figure 4.5: An example of the limitations of our 1-ply can_fork tactic. White has no immedi-
ate forking move here, leading to the tactic not matching. However, if they play 1. Nxb4, then
Black’s best response is 1. ... Rxc7 which allows a fork with 2. Nd5+ leading to the capture of
the rook.

Our appeal to the interpretability of these tactics rests on similar claims made regarding

the interpretability of rule-based strategies. Future work will involve rigorously testing these

assumptions with user studies using evidence-based measures of interpretability (Lage et al.

2019; Kliegr et al. 2021). Specifically, we wish to investigate the ease of learning and applying

these tactics in real games played by human players.
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4.1.4 Learning Tactics using Inductive Logic Programming

In this work, I present a system that integrates a modified inductive logic programming (ILP)

engine with coverage and divergence metrics for learning tactics. My system can extrapolate

chess tactics from positions drawn from play traces of human vs. human games. It requires no

more domain knowledge than the base rules of chess. I show that the learned tactics generalize

well to real-world chess positions and produce moves that outperform a random player. I

discuss some limitations of our approach and conclude with directions for future work. In so

doing, I answer RQ2(b).

4.1.4.1 Background

4.1.4.1.1 Inductive Logic Programming Inductive logic programming (ILP) is a form of

symbolic machine learning that aims to induce a hypothesis (a set of logical rules) that gener-

alizes given training examples. It can learn human-readable hypotheses from smaller amounts

of data than neural network-based models (Cropper and Dumančić 2022).

An ILP problem is specified by three sets of Horn clauses —

• B , the background knowledge,

• E +, the set of positive examples of the concept, and

• E −, the set of negative examples of the concept.

The ILP problem is to induce a hypothesis H ∈H (an appropriately chosen hypothesis space)

that, in combination with the background knowledge, entails all the positive examples and

none of the negative examples. Formally, this can be written as —

∀e ∈ E +, H ∪B |= e (i.e., H is complete)

∀e ∈ E −, H ∪B 6|= e (i.e., H is consistent)

To make the ILP problem more concrete, we reproduce an example from the paper by Crop-

per and Dumančić (2022).

Example 1. E + and E − contain positive and negative examples of the target last relation

respectively. B contains background knowledge, i.e., clauses that might be useful in inducing a

hypothesis for last.
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E + =











last([m,a,c,h,i,n,e], e).
last([l,e,a,r,n,i,n,g], g).
last([a,l,g,o,r,i,t,h,m], m).











E − =



















last([m,a,c,h,i,n,e], m).
last([m,a,c,h,i,n,e], c).
last([l,e,a,r,n,i,n,g], x).
last([l,e,a,r,n,i,n,g], i).



















B =











empty(A) :- ...
head(A,B) :- ...
tail(A,B) :- ...











From this information, we could induce a hypothesis for last as —

H =

¨

last(A,B) :- head(A,B),tail(A,C),empty(C).
last(A,B) :- tail(A,C),last(C,B).

«

4.1.4.1.2 Popper Popper is an ILP system that implements an approach called learning from

failures (Cropper and Morel 2021). It operates in three stages: generate, test and constrain. Given

an ILP problem, it generates a candidate solution, tests it against examples in the training set,

and formulates constraints based on the outcome of failed examples to cut down the solution

space. These three stages are repeated until a solution is found. Popper also allows for specifying

hypothesis biases to further constrain the solution space based on domain knowledge of the

problem being solved.

Popper uses two general types of constraints – generalization and specialization. Assume

an ILP problem 〈E +, E −, B 〉 and a generated hypothesis H . If H entails a negative example,

then H is too general and so we can prune generalisations of it. Similarly, if H does not entail a

positive example, it is too specific, and we can prune specialisations of it. The notions of the

generalisation and specialisation of a hypothesis are defined in terms of clausal subsumption,

and we refer readers to the original paper for formal definitions of these terms. Popper supports

providing a language bias to influence the hypothesis space.
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4.1.4.2 Methodology

In this section, describe the problem of learning chess tactics as an instance of strategy synthesis

for chess. We describe our formal model for chess tactics using first-order logic, and describe

our method for learning them using ILP. Finally, we describe the metrics that we use to measure

a tactic’s utility as part of our learning method.

4.1.4.2.1 ILP for Tactic Learning Given the definitions of a strategy and a chess strategy

model, we formalize the problem of learning a chess tactic model as an ILP problem 〈E +, E −, B 〉.
E + is a set of 〈position, move〉 tuples where the move made in the position is drawn from a

target policy. E − is a set of 〈position, move〉 tuples where the move made in the position is not

drawn from the target policy. B is the predicate vocabulary used to express positions, moves

and chess tactics. We want to learn a hypothesis H that maximizes the number of examples

entailed in E + and minimizes the number of examples entailed in E −. The hypothesis H is our

chess strategyσ.

Since we might not be able to find a single hypothesis that meets our objectives, we instead

learn a collection of tactics and evaluate their usefulness using the metrics of coverage and

divergence.

Given our tactic model being a first-order logic rule, we model the problem of learning it as

an ILP problem. We use training examples drawn from real games played by humans online.

Each training example is a 〈position, move〉 tuple, where position is the board state converted

to first-order logic using a hand-engineered predicate vocabulary, and move is the move made

in that position, also represented in first-order logic. We define this predicate vocabulary in the

background knowledge, along with predicates representing the board state and relationships

between squares. Our choice of predicates is motivated by the ability to use them to express

tactics from chess literature, like the pin or the fork. We also introduce a foreign predicate

implemented externally to represent a legal move. See Figure 4.6 for an expression of the fork

tactic from chess literature in this model. Our background knowledge design borrows from

that of the PAL system (Morales 1992). We refer readers to the Appendix C for the complete list

of predicates in our background knowledge.

Given this formulation of the tactic-learning problem as an ILP problem, we select Popper

as the ILP system to learn tactics with. Popper searches for the hypothesis that maximizes

the F1 score when evaluated against the examples. However, we wish to learn multiple tactics

that might not cover the entire example set. Our proposed system supports learning multiple

tactics. We do so by modifying the generate and constrain stages of the Popper ILP system in

the following ways —
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• generate: modified to only generate tactics that produce legal moves

• constrain: prevent further specializations of a tactic that does not match any position in

the training set from being generated

fork(Position,From,To) ←
make_move(From, To, Position, NewPosition),

attacks(To, Square1, NewPosition),

attacks(To, Square2, NewPosition),

different_pos(Square1, Square2),

Figure 4.6: An interpretation of the fork tactic from the chess literature using our predicate
vocabulary. The first attacks clause states that the piece at To attacks the opposing piece at
Square1 in the current position.

4.1.4.3 Evaluation

In this section, we describe the procedure used to evaluate the tactics produced by our learning

system. We describe our testing and training datasets, how we generate the tactics used for

evaluation, and the metrics we use to measure the performance of the learned tactics. Since we

do not have a reference set of existing tactics expressed in our predicate vocabulary to compare

against, we choose to compare against the following baseline tactics —

• random move tactic: makes a random legal move in a given position, and is applicable

to all positions

• ground move tactic: replicates the move made in the ground truth example, and is

applicable to all positions

• engine move tactic: makes the best move suggested by an engine, and is applicable to

all positions. We use two engines – Stockfish 14 and Maia-1600.

Hypothesis 1. The average divergence of the tactics learned by the system is lower than that of a

tactic that makes random moves.

4.1.4.3.1 Dataset To source our 〈position, move〉 training examples, we use a collection of

games played by human players on the Internet chess server Lichess3. Specifically, we use the

3https://lichess.org/
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January 2013 archive of standard (played with regular chess rules) rated (users stand to gain

or lose rating points based on the outcome) games played on the website (lichess.org 2021).

The archive consists of 121,332 games, with players of ELO rating 1601±289 (new players start

at 1500 (Lichess 2021)). To generate N examples, we randomly sample N games and select a

single random position from that game, along with the move made in that position. We select

positions beginning from move 12 (Guid and Bratko 2006; Romero 2019), and exclude games

which did not end normally or by time forfeit. Using this procedure, we generated a dataset of

100 examples. We found that using more training examples did not produce new tactics since

the hypothesis space was exhausted. For testing, we use the February 2013 archive of 123,961

games and ELO rating 1595±298 to generate 10 testing examples.

4.1.4.3.2 Training Using the bias settings provided by Popper, we limit the size of the learn-

able hypotheses to a maximum of one clause, five variables and five body literals. Empirically,

we find that this strikes a good balance between learning time and quality of learned tactics. We

run our proposed method until no more solutions are found. We obtain a list T of 837 tactics.

4.1.4.3.3 Performance Metrics To measure the performance of our tactics on the test data,

we use the metrics of accuracy, the percentage of moves suggested by a tactic that matches the

move in the test data, and coverage and divergence, which are defined in Equations (4.2) and (4.6)

respectively. To provide the evaluation function for calculating divergence, we use the engines

Maia-1600 and Stockfish 14. The Maia-1600 engine has been trained on games played by players

of ELO rating between [1600−1699] and has been shown to resemble human moves (McIlroy-

Young et al. 2020). Stockfish 14 is the winner of the TCEC 2020 Championship (Haworth and

Hernandez 2021) and is an extremely strong engine. We limit the search depth of both engines

to 1-ply. A single move made by a player is 1-ply. This choice follows from the capabilities of

our tactic model and the architecture of the Maia family of chess engines in that they do not

conduct tree search.

4.1.4.4 Results

Based on the data obtained, we report the results for each of accuracy, coverage and divergence

as a histogram with 20 buckets.

From the coverage values in Figure 4.9, we see that all the tactics learned by our system cover

30% - 60% of the test set. We conclude that the tactics learned by our system are moderately

likely to be applicable to positions that arise in real games.

From the accuracy histogram in Figure 4.10, we see the tactics learned by our system are

only marginally more accurate at predicting moves in the test set than the random baseline.
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Figure 4.7: Divergence histogram for T evaluated using Maia-1600
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Figure 4.8: Divergence histogram for T evaluated using Stockfish 14
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Figure 4.9: Coverage histogram for T
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Figure 4.10: Accuracy histogram for T
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Overall, the highest accuracy of a learned tactic in T is 42% compared to the 10% accuracy of

the random baseline.

From the divergence histogram for T calculated using Maia-1600 (Figure 4.7), we see that

Maia-1600 evaluates the learned tactics as having greater divergence from ground that the

random baseline. However, from Figure 4.8, we see that the stronger Stockfish 14 evaluates the

same tactics as having lower divergence from ground. We can conclude that the learned tactics

are better approximating Stockfish 14’s policy as compared to Maia-1600’s policy.

4.1.4.4.1 Qualitative Analysis We present three tactics learned by our system to further

analyze qualitatively.

4.1.4.4.1.1 Low Divergence The tactic in Figure 4.11 was chosen from those having the

least divergence from ground as measured by Stockfish 14. It can be interpreted as follows —

if one of your pieces is attacking the opponent’s piece (attacks(From, Square1, Position)),

move it instead to a square which puts it in line with two of your opponent’s pieces (as seen in

the predicate behind(To, Square1, Square2, Position)). To the author’s knowledge, this does

not represent an existing tactical idea in chess.

f(Position,From,To) ←

legal_move(From,To,Position),

attacks(From,Square1,Position),

behind(To,Square1,Square2,Position),

different_pos(Square1,Square2).

Figure 4.11: A learned tactic with low divergence from ground as evaluated by Stockfish 14.

4.1.4.4.1.2 Highest Accuracy The tactic in Figure 4.12 was chosen from that having the

highest accuracy. It can be interpreted as follows — if one of your pieces is attacking your

opponent’s piece (attacks(From, Square1, Position)), move it instead to a different square.

This somewhat resembles the idea of a tactical retreat in chess. It can be thought of as a more

general tactic than that in Figure 4.17.
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f(Position,From,To) ←

legal_move(From,To,Position),

attacks(From,Square1,Position),

different_pos(From,To),

different_pos(From,Square1).

Figure 4.12: A learned tactic with the highest accuracy.

4.1.4.4.1.3 Variable Reshuffling The tactic in Figure 4.13 represents a possibility in the

tactic hypothesis space that is merely a permutation of the variables in the rule. It is difficult

to interpret this in terms of chess, and is very likely meaningless. It points to opportunities to

restrict the hypothesis space using language biases or constraints to prevent such tactics from

being generated.

f(Position,From,To) ←

legal_move(From,To,Position),

behind(From,To,Square1,Position),

behind(From,Square2,Square3,Position),

behind(From,Square3,Square2,Position),

behind(From,Square2,To,Position).

Figure 4.13: A learned tactic with meaningless variable reshuffling.

4.1.4.5 Discussion

Since our system uses ILP as its learning method, it inherits many benefits and challenges

associated with ILP. Our learning system requires carefully selected language biases in the form

of background knowledge in order to learn efficiently (Cropper and Dumančić 2022). Designing

predicates suitable to game-like domains will make searching for better tactics more efficient.

The learned tactics are also interpretable (Muggleton et al. 2018), and can be added back into

the background knowledge to allow lifelong learning (Cropper and Tourret 2020). However,

work needs to be done in this area in the context of games.

Our tactics are able to beat a random baseline in producing moves similar to a beginner

player. However, they still have high divergence from player moves, have low accuracy and do
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not suggest the same moves, indicating that they do not yet adequately represent a human

beginner player. Improving the learning algorithm to penalize tactics which do not match the

ground truth moves could lead to better results.

Given that our tactics serve as an interpretable model of human players, they could also be

used to interpret chess engines, and serve as a general technique for explainable AI. However,

further work is required to learn tactics of playing strength comparable to top engines.

In order to apply our work to another game domain, one would need to engineer a set of

Prolog-based features rich enough to express a single-move policy. Due to its discrete, grid-like

and turn-based nature, chess lends itself to representation using Prolog more easily than other

games. Thus, it was easy to write features to express chess tactics since there existed a wealth

of tactics from extant literature. For other game domains, it would be helpful to review existing

strategies developed by the player community and design features to express them in Prolog.

The features involved in expressing known tactics will hopefully prove general enough to learn

effective unknown tactics as well. For new games which do not have an extensive knowledge

base of known tactics, it would be necessary to design features based on the rules of the game.

The combination of rules would become the features used to learn new tactics.

The interpretability of first-order logic rules is not a given, and particularly long rules

involving predicates with many variables cannot be considered “interpretable” by any measure.

The use of an interpretability score which models how interpretable a human player would find

a tactic can be used to optimize tactics for both divergence and interpretability. Further work is

needed to identify tactic features that contribute to interpretability and design a computational

model for calculating an interpretability score.

We use a reference engine to provide the evaluation scores for a given move. If the reference

engine and the target policy are not aligned, it would mean that moves are considered to be

similar as per the divergence metric are perhaps not actually similar. In the Results section,

we saw that Maia-1600 gave poorer divergence scores for the tactic moves as compared to

Stockfish 14. It is possible that Stockfish 14, with its greater playing strength, sees less of a

difference between the ground and tactic moves since they are both equally bad, or can be

equally good with superhuman play. It is necessary to investigate further the effects of reference

engine mis-alignment with the ground policy that we are trying to approximate with tactics.

4.1.4.6 Conclusion

We have presented the problem of learning chess tactics in the form of first-order logic rules

from examples. We have presented a learning method that uses ILP to learn these tactics. We

have evaluated this system and shown that the tactics learned cover a large portion of the test

set. Using the metrics of divergence, we showed that they can approximate a human beginner
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better than a random baseline. We discussed limitations of our method and concluded that

while it is promising, further work is required to learn tactics of acceptable playing strength.

4.1.5 Improving Tactic Learning using Precision and Recall

In an extension to the work in Section §4.1.4, I present an improvement to the strategy learning

approach for chess using ILP. I present a new vocabulary for chess tactics that implements the

full range of basic chess rules as first-order logic predicates. I formulate new constraints for the

learning system based on precision and recall to help reduce the hypothesis space of chess

tactics. Using an ablation study, I show that this approach is able to learn rules that are correct,

provide sufficient coverage, and minimize divergence from expert recommendations. I discuss

some limitations of our approach and conclude with directions for future work 4. I thus answer

RQ2(c).

4.1.5.1 Methodology

In this section, I describe the additional constraints provided to the learning system based

on precision and recall. I detail a proof of why the recall constraint is correct. I provide a

description of our new predicate vocabulary for describing chess tactics.

4.1.5.1.1 Constraints Based on Precision and Recall We propose new constraints to limit

the size of the hypothesis space during generation based on precision and recall. We formally

prove that a recall constraint will always improve recall of the learned hypotheses. The seman-

tics of the � operator in our proofs is equivalent to theory subsumption as defined in Cropper

and Morel (2021). H1 �H2 indicates that all the examples entailed by hypothesis H1 are also

entailed by H2.

Definition 1 (Precision constraint). A precision constraint prunes the specializations of a hy-

pothesis if its precision on a set of examples is less than some pre-defined lower limit.

A precision constraint cannot be shown to prune hypotheses with less precision than the

current one. We add it to investigate its effect on the learned tactics.

Definition 2 (Recall constraint). A recall constraint prunes specializations of a hypothesis if its

recall on a set of examples is less than some pre-defined lower limit.

Theorem 1. Given hypotheses H1, H2 ∈Hwith H1 �H2 and having recall values of r1 and r2 on

a training set respectively, then r1 ≤ r2.
4The code release for this work is available at https://github.com/AbhijeetKrishnan/interpretable-chess-tactics
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Proof.

Recall=
t p

t p + f n
(4.7)

H1 �H2 (4.8)

r1 =
t p1

t p1+ f n1
(4.9)

r2 =
t p2

t p2+ f n2
(4.10)

By the definition of theory subsumption, we have

t p1 ≤ t p2, and (4.11)

f p1 ≤ f p2 (4.12)

Since the number of positive examples is constant for the same population,

∴ r1 ≤ r2 (4.13)

4.1.5.1.2 Predicate Vocabulary We contribute a new predicate vocabulary for expressing

chess tactics written in Prolog. Our new predicate vocabulary allows us to express tactics

involving more situational rules of chess, such as en passant and pawn promotion. It improves

the efficiency of tactic unification by removing the need for relying on a foreign predicate

for checking legal moves. Figure 4.14 shows an interpretation of the fork expressed using our

predicate vocabulary. Our predicate vocabulary consists of 25 predicates in total. These do

not include the supporting rules required to construct these predicates since those are not

allowed to be used in our tactic model. A listing of all predicates used in our vocabulary along

with their descriptions can be found in Appendix C.
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fork(Position,Move) ←

legal_move(Position,Move),

move(Move,_,To,_),

make_move(Position,Move,NewPosition),

can_capture(NewPosition,To,ForkSquare1),

can_capture(NewPosition,To,ForkSquare2),

different(ForkSquare1,ForkSquare2).

Figure 4.14: An interpretation of the fork tactic from the chess literature using our predicate
vocabulary.

4.1.5.2 Evaluation

In this section, we describe the procedure used to evaluate the improvements made to our

tactic learning system.

Hypothesis 2. The average divergence of the tactics learned by the system including the preci-

sion and recall-based constraints and the new predicate vocabulary is lower than the average

divergence of the tactics learned by the old system.

We use the same experimental setup for learning tactics as in our previous work. We perform

an ablation study to test the effect of the new predicate vocabulary, precision constraint and

recall constraint on the tactics learned. We learn tactics for the following systems —

• Told: the system from our previous work

• Tnone: the new system described in this paper, with the new predicate vocabulary but

without the precision and recall constraints

• Tprec: the new system with the new predicate vocabulary and only the precision constraint

(with a lower limit of 0.1)

• Trec: the new system with the new predicate vocabulary and only the recall constraint

(with a lower limit of 0.1)

• Tnew: the new system (with a lower limit of precision and recall of 0.1)

To refute the hypothesis, we perform a one-sided Welch’s t-test using the divergence values

of the learned tactics.
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4.1.5.2.1 Dataset We use the same procedure as in Section §4.1.4.3.1 to source our train

and test data. For positive examples, we select a single random position from each game and

the move made in that position. For negative examples, we augment the dataset with the same

position and the top-3 choices of Maia-1600 that do not include the ground truth move. Using

this procedure, we generated a dataset of 1297 training examples, of which 488 were positive

and the rest negative, and 100 testing examples.

4.1.5.2.2 Training We use the same training hyperparameters as in Section §4.1.4.3.2.

4.1.5.2.3 Performance Metrics We use the same performance metrics as in Section §4.1.4.3.3.

We also compare them against the following baseline tactics —

• random move tactic: makes a random legal move in a given position, and is applicable

to all positions

• ground move tactic: replicates the move made in the ground truth example, and is

applicable to all positions

• engine move tactic: makes the best move suggested by an engine, and is applicable to

all positions. We use two engines – Stockfish 14 and Maia-1600.

4.1.5.3 Results and Analysis

Size Accuracy Coverage
Maia-1600 Stockfish 14

Divergence p Divergence p
Told 837 0.12±0.13 0.45±0.16 174.48±48.69 - 337.56±57.98 -
Tnone 141 0.34±0.24 0.26±0.35 103.28±63.67 < 0.01 268.45±131.67 < 0.01
Tprec 511 0.32±0.23 0.21±0.29 276.59±147.13 1.0 276.59±147.13 < 0.01
Trec 387 0.10±0.12 0.52±0.41 143.27±161.61 < 0.01 467.78±138.69 1.0
Tnew 284 0.11±0.13 0.54±0.41 143.57±167.53 < 0.01 473.31±151.90 1.0

Table 4.3: Summary statistics for the tactics learned by each system in the ablation study.

Based on the data obtained, we report boxplots for the tactics obtained from each of our

systems. The summary statistics of the tactics learned by each system is shown in table 4.3.

Based on the results of the one-sided Welch’s t-test shown in Table 4.3, we see that every

system other than Tprec demonstrates a significant (p < 0.01) improvement in divergence
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Figure 4.15: Boxplot of tactic divergence (evaluated using Maia-1600) for each system
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Figure 4.16: Boxplot of tactic divergence (evaluated using Stockfish 14) for each system
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over the old system when calculated using Maia-1600. When divergence is calculated using

Stockfish 14, only Tnone and Tprec demonstrate a significant improvement. We conclude that the

new predicate vocabulary is effective at improving divergence universally, whereas the recall

constraint is effective at improving divergence when calculated using a weaker engine.

4.1.5.3.1 Qualitative Analysis We present two tactics learned by our system to further ana-

lyze qualitatively. These were learned by Tnew.

4.1.5.3.1.1 Low Divergence The tactic in Figure 4.17 was chosen from those having the

least divergence from ground as measured by Maia-1600. It can be interpreted as follows!—

make the move that allows you to castle in the subsequent position. Castling early is a common

piece of advice given to beginner players.

f(Board,Move) ←

legal_move(Board,Move),

make_move(Board,Move,NewBoard),

castling_move(NewBoard,NewMove).

Figure 4.17: A learned tactic with low divergence from ground as evaluated by Maia-1600.

4.1.5.3.1.2 Highest Accuracy The tactic in Figure Figure 4.18 was chosen from those

having the highest accuracy. It can be interpreted as making a move that puts your opponent

in check. This tactic does not have high accuracy when evaluated using the stronger Stockfish

14 engine, which reveals a tendency for lower-rated players to tend to make checking moves

when available.

f(Position,From,To) ←

legal_move(Board,Move),

make_move(Board,Move,NewBoard),

color(Color),

in_check(NewBoard,Color,CheckingPiece).

Figure 4.18: A learned tactic with the highest accuracy.
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4.1.5.4 Discussion and Future Work

The contribution of the new predicate vocabulary and precision/recall-based constraints helps

our learning system generate better tactics that more closely approximate the ground moves

made. Adding constraints based directly on divergence could help the system search for better

tactics.

Our system is able to learn tactics that are evaluated favorably by a weak chess engine. Thus,

the tactics seem to be effective at low levels of play. However, further work needs to be done to

learn tactics that are evaluated favorably by a stronger chess engine. This would help these

tactics be effective even at high levels of play.

4.1.5.4.1 Beyond Chess The contribution of a new predicate vocabulary resulted in mea-

surable improvement to the learned tactics for Chess. To replicate this in another game domain,

one would need to engineer a set of Prolog-based features rich enough to express a single-move

policy. Due to its discrete, grid-like and turn-based nature, chess lends itself to representation

using Prolog more easily than other games. For other game domains, it would be helpful to

review existing strategies developed by the player community and design features to express

them in Prolog. For new games which do not have an extensive knowledge base of known

tactics, it would be necessary to design features based on the rules of the game.

4.1.5.4.2 Interpretability The interpretability of first-order logic rules is not a given, and

particularly long rules involving predicates with many variables may not be considered “in-

terpretable” to a general audience. The use of an interpretability score which models how

interpretable a human player would find a tactic can be used to optimize tactics for both diver-

gence and interpretability. Further work is needed to identify tactic features that contribute to

interpretability and design a computational model for calculating an interpretability score.

4.1.5.4.3 Evaluation We use a reference engine to provide the evaluation scores for a given

move. If the reference engine and the target policy are not aligned, it would mean that moves

are considered to be similar as per the divergence metric may not actually similar. In the

Results section, we saw that Stockfish 14 gave poorer divergence scores for the tactic moves

as compared to Maia-1600. It is possible that Stockfish 14, with its greater playing strength,

sees more of a difference between the ground and tactic moves. It is necessary to investigate

further the effects of reference engine misalignment with the ground policy that we are trying

to approximate with tactics.
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4.1.5.5 Conclusion

We have presented the problem of learning chess tactics in the form of first-order logic rules

from examples. We have introduced two significant improvements to a previous tactic-learning

system in the form of a) a new predicate vocabulary, and b) constraints based on precision and

recall. We have presented a novel evaluation method for these improvements using an ablation

study to measure their effects on the divergence of the learned tactics from a target policy

of beginner human players. We showed that the new predicate vocabulary and recall-based

constraint contributed significantly to reducing the divergence, whereas the precision-based

constraint did not. We discussed limitations of the improvements made and suggested future

improvements in the form of new divergence-based constraints.

4.2 MicroRTS

MicroRTS is a small implementation of a real-time strategy (RTS) game, designed to perform

AI research (Ontanon 2021). RTS games can be viewed as simplified military simulations,

where several players struggle over resources scattered over a 2D terrain by setting up an

economy, building armies, and guiding them into battle in real-time (Buro 2003). Their roots

date back to 1989, with the launch of the game Herzog Zwei (Sega Enterprises Ltd.) on the

Sega Genesis (Geryk 2001). They are now among the most popular esport genres, and top

tournaments regularly feature prize pools upwards of $1M USD (Lieberman 2022).
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Figure 4.19: A screenshot from the game 0 A.D., showing typical RTS interface elements such
as a resource overview (top left), a map of the game world (bottom left), and a description of
the selected unit (bottom center).

In comparison to chess, MicroRTS is real-time, and partially observable. A description of

its game state is shown in Figure 4.20. It has an active research community around it with

robust software implementations in Java (Ontanon 2021) and Python (Huang et al. 2021). A

MicroRTS AI competition has been organized since 2017 with the goal of producing an agent

that has the highest win rate (Ontañón et al. 2018). Due to a lack of a significant player base,

there are not as many documented strategies that human players use for MicroRTS, with most

hard-coded agent scripts written to imitate strategies found in other RTS games. However,

there is a growing body of research that attempts to synthesize programmatic strategies for

MicroRTS (Mariño et al. 2021; Medeiros et al. 2022). This effort was consolidated into the

Synthesis of Programmatic Strategies (SynProS) track for the MicroRTS AI Competition (Moraes

2021a). Section §4.2.1 details the strategy model for a MicroRTS strategy that is used in the

competition, that I will adopt for the proposed work in MicroRTS.

In my proposed work, I will investigate an approach to synthesize programmatic strategies

for MicroRTS that follows from existing work done in the domain, and leverages my prior

experience with logic programming. I detail this approach in Section §4.2.3 and expect it to

answer RQ3(a). Due to a dearth of research investigating the interpretability of the synthesized

programmatic strategies, I propose to investigate the factors affecting their interpretability by

conducting a user study. I detail the design of this proposed study in Section §4.2.4, and expect

45

https://play0ad.com/


it to answer RQ3(b).

Figure 4.20: A description of the MicroRTS game state taken from the project’s README on
GitHub.

4.2.1 MicroRTS Strategy Model

Mariño et al. (2021) introduced a domain-specific language (DSL) for MicroRTS scripts. A

program in this DSL represents a controller for a MicroRTS agent. The ISS problem is then to

synthesize a program in this DSL that meets the performance and interpretability measures

defined for the domain.

The DSL can be described as a context-free grammar (CFG), as shown in Figure 4.21, where

S1 is the start symbol. The DSL accepts programs with branching and loops, and it implements

a set of functions that assign actions to units in the game, such as “attack the closest enemy”,

which are denoted by ci , i ∈ [1, n ]. The DSL also implements Boolean functions such as “do

I control 2 ranged units?”, which are denoted by b j , j ∈ [1, m ]. A detailed description of the
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functions implemented in the DSL can be found in MicroRTS’s Wiki page (Moraes 2021b). A

sample script in this DSL is shown in Figure 4.22.

S1→C S1

�

� S2 S1

�

� S3 S1

�

� ε

S2→ if (S5) then {C }
�

� if (S5) then {C } else {C }

S3→ for (each unit u ) {S4}

S4→C S4

�

� S2 S4

�

� ε

S5→ not B
�

� B

B → b1

�

� b2

�

� · · ·
�

� bm

C → c1 C
�

� c2 C
�

� · · ·
�

� cn C
�

� c1

�

� c2

�

� · · ·
�

� cn

�

� ε

Figure 4.21: The production rules of a context-free grammar describing the DSL for MicroRTS.

f o r ( u ) :

i f not HaveUnitsStrongest ( Heavy , u ) :

harvest ( 1 , u )

f o r ( u ) :

i f not HaveQtdEnemiesbyType ( Heavy , 9 ) :

a t t a c k ( Worker , c l o s e s t , u )

i f not HaveUnitsStrongest ( Ranged , u ) :

moveaway ( Worker , u )

t r a i n ( Worker , 4 , Right )

Figure 4.22: A sample script in the MicroRTS DSL, lightly formatted to resemble Python.

4.2.2 Metrics to Evaluate MicroRTS Strategy Models

Following the SynProS competition, I propose to use the win rate of a MicroRTS strategy on

a map as a measure of its performance. It is computed by entering a strategy in a round-

robin tourament with the baseline strategies used in the MicroRTS AI competition, namely
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RandomBiased, POWorkerRush, POLightRush and NaiveMCTS. The win rate is a non-zero

fractional value between 0 and 1.

As the interpretability measure, I propose to use the notion of the non-interpretability

penalty defined for the SynProS competition. It approximates the interpretability of a strategy

using the size of the program encoding the strategy in terms of the number of instructions,

i.e., for-loops, if statements, boolean expressions and commands. It is computed as in Equa-

tion (4.15).

I −1(σ) =











0, for 0≤ |σ| ≤ 10

0.01|σ| −0.1, for 10< |σ|< 100

1, for 100≤ |σ|











(4.14)

I (σ) = 1−0.4I −1(σ) (4.15)

I −1 is the non-interpretability penalty defined in the SynProS competition, I is the inter-

pretability measure introduced in Chapter 3,σ is a MicroRTS strategy represented using the

model in Section §4.2.1, and |σ| is the number of instructions in the strategy.

4.2.3 MicroRTS Strategy Synthesis using Answer Set Programming

I propose to investigate an approach to the problem of ISS for MicroRTS that is based on answer

set programming (ASP). I detail this proposed approach in Section §4.2.3.2, and describe how I

will evaluate it in Section §4.2.3.3. From this investigation, I expect to answer RQ3(a).

4.2.3.1 Background

4.2.3.1.1 Answer Set Programming Answer Set Programming (ASP) is a declarative pro-

gramming paradigm based on the semantics of stable models (Gelfond and Lifschitz 1988). ASP

programs consist of a set of rules which allow facts to be derived from them. The language of

ASP (Gebser et al. 2015) introduces powerful modeling constructs which allow using rules to

rapidly specify a design space, and restrict it using integrity constraints. ASP has been used in

the context of games to generate levels (Smith and Mateas 2011; Smith et al. 2012). Figure 4.23

is a reproduction of Figure 8.7 from Shaker et al. (2016) that lists an ASP program which can

generate maze-like levels with the desired number of game objects.

4.2.3.1.2 Draco: Formalizing Visualization Design Knowledge as Constraints Draco is a

system introduced by Moritz et al. (2018) that uses ASP-based constraints to model data vi-
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# const width=10.

param ( " width " , width ) .

dim ( 1 . . width ) .

t i l e ( ( X , Y ) ) :− dim ( X ) , dim ( Y ) .

adj ( ( X1 , Y1 ) , ( X2 , Y2 ) ) :− t i l e ( ( X1 , Y1 ) ) , t i l e ( ( X2 , Y2 ) ) , \\
#abs ( X1−X2)+# abs ( Y1−Y2 ) == 1 .

s t a r t ( ( 1 , 1 ) ) . f i n i s h ( ( width , width ) ) .

% t i l e s have at most one named s p r i t e
0 { s p r i t e ( T , wal l ; gem ; a l t a r ) } 1 :− t i l e ( T ) .

% t h e r e i s e x a c t l y one a l t a r and one gem in the whole l e v e l
:− not 1 { s p r i t e ( T , a l t a r ) } 1 . :− not 1 { s p r i t e ( T , gem) } 1 .

Figure 4.23: An ASP program which can generate maze-like levels with integrity constraints
that specify the number of game objects.

sualization knowledge. Data visualizations were modeled using a visualization-specification

language called Vega-Lite (Satyanarayan et al. 2016). Using visualization preference data gath-

ered from user studies, a linear regression model was built to predict user preference scores

given the representation of the visualization in Vega-Lite. The design space of possible visual-

izations was modeled in ASP, and the regression function was translated to ASP to generate new

visualizations that tried to optimize the regression function, thus maximizing their predicted

appeal.

4.2.3.2 Methodology

I propose replicating the approach taken by the Draco system to synthesize interpretable

programmatic strategies for MicroRTS. I will first approach the problem of predicting a strategy’s

win rate by assembling a dataset of strategies and their win rates, and training a simple linear

regression model on it. The strategies will be synthesized using existing synthesizers due to

Mariño et al. (2021) and Medeiros et al. (2022). Then, I will model the space of MicroRTS

strategies in ASP. This will be relatively straightforward since it is already defined as a CFG. I

will then engineer features of each strategy, such as program size, number of for-loops and so

on, and use ASP to optimize the linear regression function in order to synthesize MicroRTS
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strategies that have a high win rate.

4.2.3.3 Evaluation

The evaluation of the learned strategies will be conducted in a similar manner to the framework

described by the SynProS competition. In addition to the baseline agents used, I will also

compare the ASP-based strategy synthesizer to existing strategy synthesizers, as well as to top-

performing bots in the MicroRTS AI competition, namely COAC, Mayari, MentalSeal, UmSbot,

Droplet, Rojo and Alet. My hypothesis is that the scripts learned by the Draco-based system

will achieve a higher win rate on the test maps compared to the other synthesizers.

I will also measure the interpretability of the synthesized strategies using the interpretability

measure used in the SynProS competition, and conduct a qualitative analysis of them.

4.2.4 Factors Affecting MicroRTS Strategy Interpretability

While a lot of research has focused on the synthesis portion of ISS, there is a lack of work

studying the interpretability of the synthesized strategies. I propose to run an exploratory

user study that will use a set of pre-synthesized MicroRTS strategies that vary along various

program factors as detailed in Section §4.2.3.2, and ask participants to rate the interpretability

of a strategy using a survey. Finding which factors most correlate with interpretability will

allow future researchers to develop methods that optimize for those factors when synthesizing

strategies. I describe the study design which will allow me to measure perceived interpretability

in Section §4.2.4.2. I expect the results of this investigation to answer RQ3(b).

4.2.4.1 Background

4.2.4.1.1 Interpretability in Explainable AI Artificial intelligence has become increasingly

ubiquitous in our daily lives, performing a wide range of functions from suggesting corrections

to our writing, to populating our social media feed with new posts, and even deciding whether

our resume for a job application should move on to the next stage. Given the weight of the

decisions they are now entrusted with, there is a growing realization that we, as humans,

should have some insight into how these algorithms make the decisions they do. This is further

complicated by the sheer complexity of modern artificial intelligence models, with the latest

neural networks boasting upwards of a million parameters.

The field of explainable artificial intelligence (XAI) attempts to investigate methods and

techniques to peek inside the black box of modern artificial intelligence models. Adadi and

Berrada (2018) provide one of the first comprehensive surveys on the field of XAI. Tjoa and
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Guan (2020) survey XAI work from the lens medical research. Zhang et al. (2021) provide a

recent survey on interpretability techniques specifically for neural network-based models.

As mentioned in Chapter 2, there has been a similar lack of precision in the definition and

measurement of “interpretability” as it pertains to explaining the decisions made by machine

learning models.

4.2.4.2 Methodology

Borrowing from the taxonomy presented in Doshi-Velez and Kim (2017), I propose to use a

human-grounded evaluation involving a simplified task to quantify the interpretability of a

MicroRTS strategy. Specifically, I will use a forward simulation/prediction task where I present

subjects with a strategy, a game state, and four options for future states, and ask them to

respond with which future state they think will be reached upon executing the given strategy

from the given game state. The strategies for this study will be synthesized using the ASP model

of the strategy space described in Section §4.2.3.2. I will provide additional constraints to

the generation system in order to obtain strategies that vary uniformly across the variables

to be studies, such as program size, number of for-loops etc. The current game state will be

obtained at random from a gameplay trace of the strategy executing in a game against a baseline

opponent. The three incorrect options for future states will be generated by executing a random

strategy from the current game state.

4.2.4.3 Evaluation

After completing the study, I will obtain a dataset that contains details of the participants, the

strategies, the task used (i.e., the current game state and options for future game states), and the

provided and correct responses. I will train a decision tree model on the binary classification

task of predicting whether a strategy will be correctly simulated. I will measure the importance

of a strategy feature by going through all the splits for which the feature was used and measuring

how much it has reduced the variance or Gini index compared to the parent node (Molnar

2018).
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CHAPTER

5

PROPOSED RESEARCH

In this chapter, I will detail my plans for completing the research work proposed in this docu-

ment which serve to answer the RQs listed in Section §1.2. In the case of completed work, I

will cite the paper detailing that work. In the case of proposed work, I will describe a plan to

complete the various components of that research necessary for answering the underlying RQ,

and submitting to a suitable, peer-reviewed venue. I will also provide an estimated timeline for

these research milestones and PhD degree milestones.

5.1 Research Plan

RQ1. How do we formally define the problem of Interpretable Strategy Synthesis?

The details for my proposed definition and framework for the problem of ISS are provided

in Chapter 3. This work was published in Krishnan and Martens (2022b) at the Explainable

Agency in Artificial Intelligence Workshop held during the 36th AAAI Conference on

Artificial Intelligence.

RQ2. How do we approach the problem of Interpretable Strategy Synthesis for the game of

chess?

This broader RQ is answered by the more specific RQs below.
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RQ2(a) Could we represent known chess tactics as a learnable, computational model of a

chess-playing policy and develop metrics to show that they suggest better moves

than a random baseline?

In Sections §4.1.1, §4.1.2 and §4.1.3, I show how we may utilize the framework

defined in Chapter 3 to computationally model a chess strategy and translate known

chess tactics into the model. I show that these tactics produce better moves on

average compared to a random player, thus answering RQ2(a) and contributing

towards RQ2. This work was published in Krishnan and Martens (2022b) at the

Explainable Agency in Artificial Intelligence Workshop held during the 36th AAAI

Conference on Artificial Intelligence.

RQ2(b) Do the chess strategies learned using ILP outperform a random baseline in how

closely their divergence scores approximate a beginner player?

In Section §4.1.4, I show how we can use inductive logic programming (ILP), a sym-

bolic machine learning (ML) method, to serve as a learning algorithm for chess

strategies. This work was published in Krishnan and Martens (2022a) at the Work-

shop on Artificial Intelligence for Strategy Games (SG) and Esports Analytics (EA)

held during the 18th AAAI Conference on Artificial Intelligence and Interactive Digital

Entertainment.

RQ2(c) Do the chess strategies learned by an ILP system incorporating the changes of the

new predicate vocabulary and precision/recall-based constraints produce moves

better than those learned by an ILP system without these modifications?

In Section §4.1.5, I show how modifications to the learning algorithm can be made

to improve the quality of the strategies it learns. This work has been submitted to a

peer-reviewed conference and is currently under review.

RQ3. How do we approach the problem of ISS for the game of MicroRTS?

This broader RQ is answered by the more specific RQs below.

RQ3(a) How does an ASP-based approach towards developing a synthesizer for the SynProS

competition compare to other synthesizers in this competition?

In Section §4.2.3, I detail an approach that uses answer-set programming to de-

sign a synthesizer that can search for scripts that achieve a high win rate. The key

components of this approach are —

• ML Framework to predict the win rate of a strategy: This component involves

designing a linear regression model to predict the win rate of a particular Mi-

croRTS strategy given its representation as a set of program features. I will
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assemble a dataset of MicroRTS strategies using existing synthesizers as de-

tailed in Section §4.2.3.2. Their win rate will be measured using the evaluation

procedure described in Section §4.2.3.3, but using only baseline agents as used

in the MicroRTS AI competition.

• Modeling the space of strategies using ASP: This component involves writ-

ing an ASP program to model the space of MicroRTS strategies. I will develop

this by drawing on prior experience modeling chess tactics in Prolog (see Sec-

tion §4.1.5.1), and developing a level generator in ASP

• Constraint Optimization: This component involves translating the linear re-

gression model into an optimization constraint that will be used in the ASP

program for MicroRTS strategies. This should allow the generation of MicroRTS

strategies that try to maximize win rate.

• Evaluation, Paper Writing and Submission: I plan to submit this work in the

research track at the Advances in Computer Games 2023 conference (ACG 2023).

RQ3(b) Which features of a MicroRTS strategy model have a statistically significant correla-

tion with the interpretability of said strategy?

The design for this study is described in Section §4.2.4. Its key components are:

• Obtaining strategies: I will collect the strategies that users will interpret by

using both existing synthesizers (see Section §4.2.3.2) and the ASP model of a

MicroRTS strategy I will develop as part of RQ3(a).

• Desigining the interpretability task: My proposed design of the interpretability

task requires obtaining game states from a MicroRTS environment by running

various agents in it. I will use the MicroRTS Gym framework (Ontañón et al.

2018) to collect the data for this task.

Following this, I will design my study and submit it to the IRB for approval. Then, I

will analyze participant responses and write it up as a paper. The planned venue for

publication is the as yet unannounced 6th International Workshop on EXplainable

and TRAnsparent AI and Multi-Agent Systems (EXTRAAMAS 2024) whose deadline

is expected to be in March 2024.

5.2 Proposed Timeline

I present a semester-wise breakdown of the important milestones before my planned thesis

defense and graduation.
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• Spring 2022

– RQ1 Framework (EAAI-22) - Completed

– RQ2(a) Study (EAAI-22) - Completed

• Fall 2022

– RQ2(b) Study (AIIDE-22 SG Workshop) - Completed

• Spring 2023

– RQ2(c) Study (under review) - Completed

– RQ3(a) Dataset Assembly - In progress

– RQ3(a) ASP Modeling

• Summer 2023

– RQ3(a) Study (ACG-23)

– RQ3(b) Obtaining Strategies

• Fall 2023

– RQ3(b) Task Design

– RQ3(b) Study Approval

• Spring 2024

– RQ3(b) Analysis (EXTRAAMAS ’24)

– Complete dissertation (early Spring ’24)

– Defend thesis (Mid-late Spring ’24)

– Graduate (May ’24)
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CHAPTER

6

CONCLUSION

In this document, I have outlined my thesis work, including work I have already performed, as

well as what is yet to be done. My goal for this dissertation is to investigate approaches to the

problem of interpretable strategy synthesis (ISS) for multiple game domains in order to better

understand how to design effective strategy models for games, and which algorithms are most

successful to learn them. The knowledge generated from this work will inform existing research

and industry in esports analytics that try to generate insights from player data. It will also help

the player base uncover new strategies which can be easily communicated and shared.

6.1 Summary

My research for this dissertation is interdisciplinary and draws from XAI research, cognitive

modeling and game AI. I will investigate designs for game strategy models that can be best

understood by players. I will also investigate and implement algorithms to automatically learn

these strategies from gameplay data.
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6.2 Expected Contributions

The work proposed for this dissertation has stemmed from research I have completed on the

design of interpretable strategy models for the games of chess and MicroRTS, and algorithms

to learn them. The expected contributions of this dissertation are as follows —

• A formal definition of the problem of interpretable strategy synthesis and a framework

to describe its components. While there has been prior work in attempting to solve the

problem of ISS, there has yet to be a unified, formal description of the problem in order

to help researchers situate their work and reuse models and algorithms developed for

other games. This formalization will help provide a common vocabulary for researchers

working on the ISS problem.

• An approach towards solving the ISS problem for chess by using a chess tactic-inspired

strategy model, and a learning algorithm based on ILP. While there has been a lot of

research on pattern-learning in chess, none of them attempt to make their learning meth-

ods work for games other than chess. The tactic model and ILP-based learning method is

available as publically-available software implementations for other researchers to use

and apply to different games.

• An approach towards solving the ISS problem for MicroRTS using ASP and a measurement

of the critical factors affecting the interpretability of its strategy model. While prior work

has developed a strategy model for MicroRTS and algorithms to learn it, there has been

no attempt to study how interpretable the learned strategies are, or how we might make

them better for the purpose of player understanding. This work will provide a software

implementation of an ASP-based learning method to derive MicroRTS strategies, as well

as a dataset of participant ratings of strategy interpretability which will inform future

work in synthesizing interpretable MicroRTS strategies. It will also inform work in XRL

that attempts to produce script-based explanations.
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Fischer, Q., Hashme, S., Hesse, C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J., Petrov, M.,
d. O. Pinto, H. P., Raiman, J., Salimans, T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang,
J., Wolski, F., and Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.

Pitrat, J. (1977). A chess combination program which uses plans. Artificial Intelligence, 8(3):275–
321.

Puiutta, E. and Veith, E. M. (2020). Explainable reinforcement learning: A survey. In Interna-
tional Cross-Domain Conference for Machine Learning and Knowledge Extraction, pages 77–95.
Springer.

Reitman, J. G., Anderson-Coto, M. J., Wu, M., Lee, J. S., and Steinkuehler, C. (2020). Esports
research: A literature review. Games and Culture, 15(1):32–50.

Research, G. V. 2022. Esports market size, share & trends analysis report by revenue source (spon-
sorship, advertising, merchandise & tickets, media rights), by region, and segment forecasts,
2022 - 2030. Grand View Research. https://www.grandviewresearch.com/industry-analysis/
esports-market (Accessed: 2023-03-21).

Rios, L. M. and Sahinidis, N. V. (2013). Derivative-free optimization: a review of algorithms and
comparison of software implementations. Journal of Global Optimization, 56:1247–1293.

Romero, O. (2019). Computer analysis of world chess championship players. ICSEA 2019, page
212.

62

https://github.com/Farama-Foundation/MicroRTS/wiki/Synthesis-of-Programmatic-Strategies-Framework---SynProS
https://github.com/Farama-Foundation/MicroRTS/wiki/Synthesis-of-Programmatic-Strategies-Framework---SynProS
https://www.grandviewresearch.com/industry-analysis/esports-market
https://www.grandviewresearch.com/industry-analysis/esports-market


Romstad, T., Costalba, M., and Kiiski, J. (2021). Stockfish 14.

Romstad, T., Costalba, M., and Kiiski, J. (2022). Stockfish 15.1. Accessed: 2023-01-14.

Rose, L. (2012). Winning basketball fundamentals. Human Kinetics.

Sadler, M. and Regan, N. (2019). Game changer: Alphazero’s groundbreaking chess strategies
and the promise of ai. New in Chess.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and Heer, J. (2016). Vega-lite: A grammar of
interactive graphics. IEEE transactions on visualization and computer graphics, 23(1):341–350.

Schubert, M., Drachen, A., and Mahlmann, T. (2016). Esports analytics through encounter
detection. In Proceedings of the MIT Sloan Sports Analytics Conference, volume 1, page 2016.
MIT Sloan Boston, MA.

Seirawan, Y. (2005). Winning chess tactics. Everyman Chess.

Shaker, N., Togelius, J., Nelson, M. J., Nelson, M. J., and Smith, A. M. (2016). Asp with applications
to mazes and levels. Procedural Content Generation in Games, pages 143–157.

Shu, T., Xiong, C., and Socher, R. (2017). Hierarchical and interpretable skill acquisition in
multi-task reinforcement learning. arXiv preprint arXiv:1712.07294.

Sieusahai, A. and Guzdial, M. (2021). Explaining deep reinforcement learning agents in the atari
domain through a surrogate model. Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, 17(1):82–90.

Silman, J. 2021. Fighting games explained: What is frame data and how to use it to your advan-
tage? Playstation Competition Center. https://compete.playstation.com/en-us/all/articles/
fighting-games-explained-what-is-frame-data-and-how-to-use-it-to-your-advantage (Ac-
cessed: 2023-03-24).

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with
deep neural networks and tree search. nature, 529(7587):484–489.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L.,
Kumaran, D., Graepel, T., et al. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144.

Slack, D., Friedler, S. A., Scheidegger, C., and Roy, C. D. (2019). Assessing the local interpretability
of machine learning models. arXiv preprint arXiv:1902.03501.

Smith, A. M., Andersen, E., Mateas, M., and Popović, Z. (2012). A case study of expressively con-
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APPENDIX

A

ACRONYMS

A summary of all acronyms is documented in Table A.1.

Acronym Abbreviation

Advances in Computer Games ACG

Answer Set Programming ASP

Artificial Intelligence AI

Association for the Advancement of Artificial Intelligence AAAI

Centipawns Cp

Context-free grammar CFG

Domain-Specific Language DSL

Electronic sports Esports,e-sports,eSports

Explainable and Transparent AI and Multi-agent Systems EXTRAAMAS

Explainable artificial intelligence XAI

Explainable Reinforcement Learning XRL

Inductive Logic Programming ILP

Interpretable Strategy Synthesis ISS

Machine Learning ML

Neural Network NN

Patterns and Learning PAL
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Real-time Strategy RTS

Reinforcement Learning RL

relative least general generalization rlgg

Research Question RQ

Synthesis of Programmatic Strategies SynProS

Top Chess Engine Championship TCEC

Universal Chess Interface UCI

Table A.1: A summary of acronyms used in alphabetical order.
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APPENDIX

B

VARIABLES

A summary of all variables is documented in Table B.1.

Variable Abbreviation

Game environment G

State space S

Action space A

State transition function P

Reward function R

Discount factor γ

Strategy σ

State s

Action a

Timestep t

Applicable states Aσ
Strategy model M

Interpretability measure I

State-Value Function Vπ
chess engine E

position evaluation function vE (s )
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move evaluation function qE (s , a )

difference dE (s , a1, a2)

background knowledge B

positive examples E +

negative examples E −

hypothesis H

hypothesis model H

true positives t p

false positives f p

true negatives t n

false negatives f n

Table B.1: A summary of variables and their abbreviations used in this document in order of
their use.
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APPENDIX

C

BACKGROUND KNOWLEDGE

DEFINITIONS

This appendix has all the background knowledge definitions used by our system. These do

not include any helper rules used to define the predicates in the background knowledge since

those are not used to define tactics.

• legal_move(Board,Move): Defines legal moves of chess pieces.

• in_check(Board,Side,Square): Defines whether a particular side is in check by a

piece.

• pawn_capture(Board,Move): Defines a pawn capture move.

• castling_move(Board,Move): Defines valid castling move.

• make_move(Board,Move,NewBoard): Performs the actual movement of a piece by

changing the state appropriately.

• can_capture(Board,Sq1,Sq2): Defines whether a piece on square Sq1 can capture

another on square Sq2.
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• is_capture(Board,Move): Defines valid capture move.

• en_passant(Board,Square): Defines the en passant square on the current board, if

any.

• queenside_castle(Board,Side): Defines the queenside castling rights of the side.

• kingside_castle(Board,Side): Defines the kingside castling rights of the side.

• turn(Board,Side): Defines who’s turn it is to make a move on the current board.

• is_attacked(Board,Square,SquareSet): Defines the squares that are being attacked

by a piece.

• can_attack(Board,Sq1,Sq2): Defines an attack being carried out by a piece on one

square, on another square.

• is_empty(Board,SquareSet): Defines a set of empty squares on the board.

• xrays(Board,Behind,Middle,Front): Defines a piece that x-rays another piece.

• valid_piece_at(Board,PieceType,Col,Sq): Defines the existence of a piece and

its attributes at a given square.

• remove_piece_at(Board,Square,NewBoard): Removes a piece from the given square.

• move(Move,From,To,PromoList): Unifies the list representation of a move with its

component parts, for e.g., move([a7,a8,q],a7,a8,[q]).

• other_color(Color,OtherColor): Defines a relationship between the two opposing

colors on the board.

• color(Color): Defines a valid color.

• sliding(PieceType): Defines a piece that moves in a straight line.

• piece_type(PieceType): Defines a valid piece type.

• piece(Piece): Defines a valid piece.

• sq_between_non_incl(Sq1,Sq2,Sq2): SquareSq3 is in the same straight line defined

by squares Sq1 and Sq2 (non-inclusive).

• different(Sq1,Sq2): Squares Sq1 and Sq2 are different.
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